
DCM 2005 Preliminary Version

First International Workshop on

Developments in Computational Models

DCM 2005

Lisbon, Portugal

10 July, 2005

Preliminary Proceedings

Edited by Maribel Fernández and Ian Mackie

DCM 2005 is a satellite workshop of ICALP 2005.

M. Fernández and I. Mackie

Contents

A Generalized Higher-Order Chemical Computation Model
with Infinite and Hybrid Multisets .5
J.-P. Banatre, P. Fradet, Y. Radenac

A Universal Accepting Hybrid Network of Evolutionary Processors15
F. Manea, C. Martin-Vide, V. Mitrana

Token-Passing Nets: Call-by-Need for Free . 25
F.-R. Sinot

Supporting Function Calls within PELCR . 35
A. Cosentino, M. Pedicini, F. Quaglia

Type Theory and Language Constructs for Objects with States 45
H. Xu, S. Yu

SCHOOL: a Small Chorded Object-Oriented Language 55
S. Drossopoulou, A. Petrounias, A. Buckley, S. Eisenbach

Coalgebraic Description of Generalized Binary Methods 65
F. Honsell, M. Lenisa, R. Redamalla

Invited Tutorial: Quantum Communication and Cryptography:
Introductory Concepts and State-of-the-Art . 75
R. Nagarajan

On Reversible Combinatory Logic . 76
A. Di Pierro, C. Hankin, H. Wiklicky

Classically-Controlled Quantum Computation . 86
S. Perdrix, P. Jorrand

A Calculus for Reconfiguration . 95
S. Fagorzi, E. Zucca

Splitting mobility and communication in Boxed Ambients 105
P. Garralda and A. Compagnoni

Abstract Effective Models . 115
U. Boker and N. Dershowitz

iRho: the Software [System Description] .124
L. Liquori

2

M. Fernández and I. Mackie

Preface

Several new models of computation have emerged in the last few years, and
many developments of traditional computational models have been proposed
with the aim of taking into account the new demands of computer systems
users and the new capabilities of computation engines. A new computational
model, or a new feature in a traditional one, usually is reflected in a new family
of programming languages, and new paradigms of software development.

The aim of this first DCM workshop is to bring together researchers who
are currently developing new computational models or new features for tradi-
tional computational models, in order to foster their interaction, to provide a
forum for presenting new ideas and work in progress, and to enable newcomers
to learn about current activities in this area.

Topics of interest include all abstract models of computation and their
applications to the development of programming languages and systems. This
includes:

• Functional calculi: lambda-calculus, rho-calculus, term and graph rewriting;

• Object calculi;

• Interaction-based systems: interaction nets, games;

• Concurrent models: process calculi, action graphs;

• Calculi expressing locality, mobility, and active data;

• Quantum computational models;

• Biological or chemical models of computation;

The First International Workshop on Developments in Computational Mod-
els was held in Lisbon, Portugal on the 10th July 2005, as a satellite event of
ICALP 2005. This volume contains the preliminary versions of the papers pre-
sented at DCM 2005. The final version will be published in Electronic Notes
in Theoretical Computer Science. The Programme Committee selected 13 pa-
pers for presentation at the workshop. In addition the programme included
an invited tutorial by Raja Nagarajan.

The Programme and Organising Committee consisted of:

• Vincent Danos, University of Paris 7 (France)

• Mariangiola Dezani, University of Torino (Italy)

• Maribel Fernández, King’s College London (UK), co-chair

• Claude Kirchner, LORIA and INRIA (France)

• Cosimo Laneve, University of Bologna (Italy)

3

M. Fernández and I. Mackie

• Ian Mackie, King’s College London (UK), co-chair

• Nobuko Yoshida, Imperial College London (UK)

• Jorge Sousa Pinto, University of Minho (Portugal), Local Organizer

We would like to thank all those who contributed to DCM 2005. We are
grateful to the Programme Committee for their careful and efficient work in
reviewing and selecting the submitted papers, as well as to: José B. Almeida,
Christopher Anderson, Martin Berger, Bob Coecke, Alessandra Di Pierro,
Ross Duncan, Luigi Liquori, Rajagopal Nagarajan, Luca Paolini, Marco Pedicini,
Simon Perdrix, Jorge S. Pinto, Nikolaos Siafakas, François-Régis Sinot, Gareth
Stoyle and Daniele Varacca for their work as referees. DCM 2005 was spon-
sored by the Department of Computer Science, King’s College London.

Maribel Fernández and Ian Mackie

London, 27 June, 2005.

4

DCM 2005 Preliminary Version

A Generalized Higher-Order Chemical
Computation Model

J.-P. Banâtre a, P. Fradet b and Y. Radenac a

a Irisa, Université de Rennes 1, Inria, Campus de Beaulieu, 35042 Rennes Cedex,
France

{jbanatre,yradenac}@irisa.fr
b INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France

Pascal.Fradet@inria.fr

Abstract

Gamma is a programming model where computation is seen as chemical reactions
between data represented as molecules floating in a chemical solution. Formally,
this model is represented by the rewriting of a multiset where rewrite rules model
the chemical reactions. Recently, we have proposed the γ-calculus, a higher-order
extension, where the rewrite rules are first-class citizen. The work presented in
this paper increases further the expressivity of the chemical model with generalized
multisets: multiplicities of elements may be infinite and/or negative. Applications
of these new notions are illustrated by some programming examples.

1 Introduction

The Gamma formalism was proposed in [4] to capture the intuition of com-
putation as the global evolution of a collection of atomic values interacting
freely. Gamma can be introduced intuitively through the chemical reaction
metaphor. The unique data structure in Gamma is the multiset which can be
seen as a chemical solution. A simple program is made of a reaction condition
and an action. Execution proceeds by replacing elements satisfying the reac-
tion condition by the elements specified by the action. The result of a Gamma
program is obtained when a stable state is reached that is to say when no more
reactions can take place.

For example, the computation of the maximum element of a non empty
set can be described by the reaction rule replace x, y by x if x ≥ y meaning
that any couple of elements x and y of the multiset is replaced by x if the
condition is fulfilled. This process goes on till a stable state is reached, that is
to say, when only the maximum element remains. Note that, in this definition,
nothing is said about the order of evaluation of the comparisons. If several

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Banâtre, Fradet and Radenac

disjoint pairs of elements satisfy the condition, the reactions can be performed
in parallel.

Gamma can be formalized as a multiset rewriting language. The literature
about Gamma as summarized in [1] is based on finite multisets (often called
bags). However, one may think of extensions to this basic concepts by gener-
alizing the multiplicity of elements in multisets to infinity (infinite multisets)
and even multisets with elements possessing a negative multiplicity (hybrid
multisets).

In this paper, we investigate these unconventional multiset structures (infi-
nite and hybrid multisets) and show how they can be interpreted in a chemical
programming framework. Section 2 presents the basic framework and intro-
duces a higher-order chemical model [3]. Section 3 presents HOCl, a language
based on the previous model which integrates infinite multisets and negative
multiplicity. It sketches the semantics and implementation of the language
using characteristic functions. We conclude in Section 4 with a short review
of related work.

2 A higher-order chemical model

In this section, we introduce a higher-order chemical model called the γ-
calculus [3]. In this chemical model of computation, every element (includ-
ing reaction rules) is considered as a molecule. A program is a solution of

M ::= x ; variable

| γ(P)bCc.M ; γ-abstraction (reaction rule)

| M1, M2 ; multiset (AC)

| 〈M〉 ; solution

P ::= x ; matches any molecule

| P1, P2 ; matches a compound molecule

| 〈P 〉 ; matches an inert solution

Grammar 1: Syntax of molecules.

molecules. A molecule can be (cf. Grammar 1) (1) a variable x that can rep-
resent any molecule, (2) a γ-abstraction γ(P)bCc.M where P is the pattern
which determines the format (or type) of the expected molecule, C is the re-
action condition and M the result of the reaction, (3) a compound molecule
(M1, M2) built with the associative and commutative constructor “,”, or (4)
a solution denoted by 〈M〉 which isolates a molecule M from the others.

6

Banâtre, Fradet and Radenac

Molecules can be freely reorganized using the associativity and commuta-
tivity of the multiset constructor “,”:

(M1, M2), M3 ≡ M1, (M2, M3) M1, M2 ≡ M2, M1

These rules can be seen as a formalization of the Brownian motion of chemical
solutions.

Another distinctive feature of chemical models is the reaction concept. In
our model, it is represented by a rewrite rule:

(γ(P)bCc.M), N → φM if P match N = φ and φC

If a γ-abstraction “meets” a closed molecule N that matches the pattern P
(modulo a substitution φ) and satisfies the reaction condition C (a boolean
expression E), then they may react. The γ-abstraction γ(P)bCc.M and the
molecule N are replaced by the molecule φM (i.e. the body of the abstraction
after substitution).

An execution consists in such rewritings (“chemical” reactions) until the
solution inert (no further rewriting is possible). There are two structural rules:

locality
M1 → M2

M, M1 → M, M2

solution
M1 → M2

〈M1〉 → 〈M2〉

The locality rule states that if a molecule M1 can react then it can do so
whatever its context M . The solution rule states that reactions can occur
within nested solutions.

This model of computation is intrinsically parallel and nondeterministic.
As long as reactions involve different molecules, they can take place at the
same time in a solution. Furthermore, if a molecule contains several elements,
it is not know a priori how they will combine because of the Brownian motion.
For example, consider the solution 〈(γ(x, y).x), true, false〉, it may reduce to
two distinct stable terms (〈true〉 or 〈false〉) depending on the application of
AC rules and whether the x will match true or false.

Note that abstractions (γ(P)bCc.M) disappear in reactions: they are said
to be one-shot. It is easy (using recursion) to define n-shot abstractions (de-
noted like in Gamma by replaceP by M if C) which do not disappear in
reactions. For instance, the following program:

〈2, 10, 5, 8, 11, 8, replace x, y by x if x ≥ y〉

computes the maximum of some integers. The abstraction does not disappear
and reacts as long as there are at least two integers in the solution. The
resulting inert solution is 〈11, replace x, y by x if x ≥ y〉.

A solution can be matched only if it is inert (i.e. no more reaction can occur
in it). This is an important property that permits the ordering of rewritings.
For example, Program 1 below uses this restriction to sequence the different

7

Banâtre, Fradet and Radenac

steps of the computation. Program 1 computes the largest prime number
lower than a given integer. First, only reactions inside the sub-solution may

largestPrime10 =

let sieve = replace x, y by x if x div y in

letmax = replace x, y by x if x ≥ y in

〈〈2, 3, 4, . . . , 10, sieve〉, γ〈sieve, x〉.x, max〉

Program 1: A program that computes the largest prime number lower than
10.

occur: the sieve abstraction computes all prime numbers lower than 10 by
removing integers (y) for which a divider (x) is found. When the sub-solution
becomes inert, the abstraction γ〈sieve, x〉.x, max matches it and extracts all
the prime numbers (i.e. suppresses the reaction sieve) and computes their
maximum using the reaction the max.

3 HOCl: multiplets, infinite multiplets and hybrid mul-
tisets

HOCl (Higher Order Chemical Language) is a programming language based on
the previous model extended with infinite and hybrid multisets. Grammar 2
gives its syntax.

3.1 Multiplets

A multiplet is a multiset of identical elements. We introduce an exponential
notation to denote and manipulate them:

an ≡ a(n−1), a and a1 ≡ a for any n > 1

We consider only multiplets of a basic element (constants, abstractions
and inert solutions) and not of a multiset.

The exponential notation is also used for pattern-matching. Abstractions
may select a fixed number of identical elements. For example, the abstraction
matching three 1 is denoted by:

γ(x3)bx = 1c.M ≡ γ(x, y, z)bx = y ∧ y = z ∧ x = 1c.M

Consider that an integer x is represented by a multiplet of x 1’s, the integer
division of x by y can be done by grouping y occurrences of 1’s and replacing

8

Banâtre, Fradet and Radenac

Program

S ::= M ; a molecule

| ∅ ; nothing

Molecules

M ::= A ; atom (basic molecule)

| M1, M2 ; compound molecule

| x ; variable (x ∈ V)

| Ai ; multiplet

Atoms

A ::= x : U ; variable (x ∈ V)

| E ; expression

| γ(P)bEc.S ; one-shot reaction rule

| 〈M〉 ; solution

| (name)A ; tagged molecule (name is a string)

Expressions

E ::= . . . ; usual integer and boolean expressions

Patterns

P ::= x : T ; matches any molecule of type T

| ω ; matches any molecule or nothing

| P1, P2 ; matches a compound molecule

| (name)P ; matches a molecule tagged with name

| 〈P 〉 ; matches an inert solution

| (P1|P2) ; matches a pair

| P i ; matches a multiplet

Grammar 2: Syntax of programs.

9

Banâtre, Fradet and Radenac

them by a 1̂ (a tagged integer denoted by a “hat” here) for the “quotient”:

γ(y). replace 1z by 1̂ if z = y

When the solution becomes inert, the multiplicity of 1̂ is the quotient, and the
multiplicity of the unmarked 1 is the remainder. For example, to divide 5 by
2 we write 〈15, 2, cluster〉 which reduces to 〈1, 1̂2, replace 1z by 1̂ if z = 2〉.

intdiv = γ(x, y).

let cluster = γ(y). replace 1z by 1̂ if z = y in

let sumRemainder = replace x, y by x + y in

let sumQuotient = replace x̂, ŷ by x̂ + y in

〈〈1x, y, cluster, sumQuotient〉, γ〈x〉.x, sumRemainder〉

Program 2: Integer division.

The size of a multiplet may be determined only at runtime. For example,

power =

γ(x, y). if y = 0 then 1

else if y > 0 thenxy, (γ(u, v).u ∗ v)y−1

else(1
x
)−y, (γ(u, v).u ∗ v)−y−1

Program 3: Compute the power function.

the power function (cf. Program 3) computes exp(x, y) (x, y ∈ Z) by generating
two multiplets of variable size: y copies of x and y−1 products, if y > 0. Here
is an example of a reduction to compute exp(5, 7):

〈5, 7, (power)〉 → 〈57, (γ(u, v).u ∗ v)6〉 →

〈25, 55, (γ(u, v).u ∗ v)5〉 → . . . → 〈78125〉

Since we only consider multiplets of values, multiplets of active solutions
are interpreted as the multiplet of the inert form obtained after reduction. For
example let choose = γ(x : Int, y : Int).x which takes two integers and returns
one of them, then the solution 〈1, 2, choose〉42 denotes either the multiplet
〈1〉42 either 〈2〉42 but not 〈1〉20, 〈2〉22. The expression must be evaluated to an
inert form before the multiplet can be produced. Similarly, in the abstraction
γ(x3)bCc.M , the variable x can only match an inert value.

In the Jackpot! program (Program 4), three solutions representing the
three wheels of the machine evolve independently. When the three solutions
become inert, the win abstraction checks if it is a multiplet of size 3, i.e. if

10

Banâtre, Fradet and Radenac

jackpot =

let choose = replace x, y by x in

letwheel = 〈cherry, lemon, bell, bar, plum, orange, melon, seven, choose〉 in

letwin = γ(x3).“wonJackpot” in

〈wheel, wheel, wheel, win〉

Program 4: Jackpot!

the three wheels are identical. The solution 〈wheel3, win〉 would be a wrong
specification since in that case the draw is performed before the multiplet is
produced. The machine would always produce a jackpot.

3.2 Infinite multiplets

An obvious generalization of multiplets is to allow infinite multiplets. An
infinite multiplet is denoted by M∞. It represents an infinity of copies of
M , but it is also a molecule that can be produced or removed like any other
molecule.

An application of infinite multiplets is to allow elements to take part in
any number of reactions in parallel. For example, when a n-shot abstraction
reacts, it is put back into the solution after the reaction where it may react
again and so on. A parallel interpretation of a n-shot abstraction could be
made using an infinite multiplet of the corresponding one-shot abstraction:

replaceP by M if C ' (γ(P)bCc.M)∞

Instead of having one molecule taking part to one reaction at a time (sequential
process), we consider having an infinity of abstractions that can react at the
same time.

Another example is the quicksort program where all integers must be com-
pared to a predefined pivot. In the following solution all integers lower or
equal to the pivot (represented here by an integer tagged by the string pivot)
are removed:

〈(pivot)5, 8, 3, 6, 4, 5, 3, replace(pivot)x, y by(pivot)x if x ≥ y〉

Since the n-shot abstraction and the pivot are unique, only one reaction can
occur at each reduction step. Considering the n-shot abstraction and the pivot
as infinite multiplets, several comparisons can occur at the same time:

〈((pivot)5)∞, 8, 3, 6, 4, 5, 3, ((cmp)γ((pivot)x, y)bx ≥ yc.∅)∞〉

By extending patterns, infinite multiplets can be manipulated as a single

11

Banâtre, Fradet and Radenac

molecule. For example, when the previous computation is finished, the infinite
multiplets can be removed in one reaction:

γ〈((pivot)x)∞, ((cmp)y)∞, z〉.〈z〉

Since we consider only multiplet of basic elements, the expression (1, 2)∞ is
illegal. This restriction is motivated by representation issues (see Section 3.4).

3.3 Negative multiplicities

Hybrid multisets [6,9] are a generalization of multisets. In a hybrid multiset,
the multiplicity of an element can be negative. A molecule a−1 can be viewed
as an “antimatter”: some positive and negative multiplet cannot cohabit in
the same solution, they merge into one multiplet whose exponent is the sum
of the multiplicities.

For example, assume that a rational number p
q

is represented by a molecule
which contains the prime factorization of p and q but with negative multiplici-
ties for the latter. Then, 20

9
is represented by the molecule 22, 5, 3−2. By simply

putting molecules representing rational numbers together in the same solution,
we compute their product. For example, the product 20

9
∗ 15

8
is represented by

the following reaction 〈22, 5, 3−2〉, 〈3, 5, 2−3〉, γ(〈f〉, 〈g〉).〈f, g〉 → 〈52, 3−1, 2−1〉.
Infinite negative multiplets can be seen as black holes. It can be used

to remove all elements (present or to come) of a multiset. Let pi a reaction
computing the product of a multiset of integers. Then, the integer 1, being
the neutral element of the product, can be deleted prior to performing pi. The
pi operator may be encoded by:

pi = γ〈x〉.〈1−∞, x, (replace x, y by x ∗ y)〉

Before considering any product, all 1’s are annihilated, for example:

〈2, 9, 1, 5, 6, 1, 1, 2〉, pi → 〈1−∞, 2, 9, 5, 6, 2, (replace x, y by x ∗ y)〉 → . . .

After stabilization, 1−∞ must be replaced by 1 (in case that the solution
contained only 1’s) and then the reaction can be removed.

Other examples that come to mind include a garbage collector that de-
stroys useless molecules by generating their negative counterpart, or negative
molecules used as anti-virus: a part of a system identifies a virus and generates
an infinity of anti-virus (negative counterparts) that will spread in the whole
system to clean it.

3.4 Representation with characteristic functions

Infinite multiplets cannot be represented by enumerating all their atoms. Rep-
resenting them by generators (e.g. M∞ ≡ replace ∅by M) makes it difficult
to ensure that M∞, M∞ ≡ M∞. Instead, we use the standard mathematical

12

Banâtre, Fradet and Radenac

representation of a multiset, that is a function associating to each element of
the multiset its number of occurrences (multiplicity): A molecule M is repre-
sented by a characteristic function {|M |} : Atoms → Z ∪ {+∞,−∞} such
that for all x ∈ Atoms, {|M |}(x) represents the number of occurrences of x
in M . The set of values Atoms is defined as:

Atoms ::= e | γ(P)bBc.M | 〈M〉 | (ident)A

Atoms are either an expression e in normal form (an integer, a boolean or a
pair), a γ-abstraction, a solution (represented by its characteristic function)
or a named molecule.

The representation of multisets in terms of functions depends on a notion
of equality on Atoms. Since our multisets may contain programs, a true
semantic equality cannot be implemented. A simple choice would be to use
equality on basic values (integers, booleans and names), each composite value
(γ-abstractions, sub-solutions, etc.) being only equal to themselves (struc-
tural equality). For example, the solution 〈1∞, 4, 5−2, (γ(x, y).x), 〈3, true〉〉 is
represented by the function that for any x ∈ Atoms:

f(x) =



∞ if x = 1

1 if x = 4

−2 if x = 5

1 if x = γ(x, y).x

1 if {|x|} = g

0 otherwise

with g(x) =


1 if x = 3

1 if x = true

0 otherwise

With this representation, infinite and/or negative multiplets can be repre-
sented and manipulated efficiently.

4 Conclusion

In this short paper, we have tried to convey the main ideas and applications of
infinite and hybrid multisets. The interested reader will be able to find more
details in [2].

As far as the higher-order generalization is concerned, a higher-order ex-
tension of Gamma has already been proposed in [8]. However, reactions were
not first-class citizens since they were kept separate from multisets of data.
The hmm-calculus [7] (for higher-order multiset machines) is an extension of
Gamma where reactions are one-shot and first-class citizens. Although, the
hmm-calculus is an interesting attempt to generalize the Gamma model of
computation, it has not been thought as a programming language as HOCl.

13

Banâtre, Fradet and Radenac

Other models, inspired by Gamma, are worth to be mentioned. The chem-
ical abstract machine or Cham was proposed in [5] to describe the operational
semantics of process calculi. P-systems [10] are computing devices inspired
from biology. It consists in nested membranes in which molecules reacts. A
set of partially ordered rewrite rules is associated to each membrane. These
rules describe possible reactions and communications between membranes of
molecules. All these models are first-order.

Currently, we are investigating a complete semantics of infinite and nega-
tive multiplets with characteristic functions.

References

[1] Banâtre, J.-P., P. Fradet and D. Le Métayer, Gamma and the chemical reaction
model: Fifteen years after, in: Multiset Processing, LNCS 2235 (2001), pp. 17–
44.

[2] Banâtre, J.-P., P. Fradet and Y. Radenac, Chemical programming with infinite
and hybrid multisets (2005), (available on request).

[3] Banâtre, J.-P., P. Fradet and Y. Radenac, Principles of chemical programming,
in: S. Abdennadher and C. Ringeissen, editors, Proceedings of the 5th
International Workshop on Rule-Based Programming (RULE 2004), ENTCS
124 (2005), pp. 133–147.

[4] Banâtre, J.-P. and D. Le Métayer, Programming by multiset transformation,
Communications of the ACM (CACM) 36 (1993), pp. 98–111.

[5] Berry, G. and G. Boudol, The chemical abstract machine, Theoretical Computer
Science 96 (1992), pp. 217–248.

[6] Blizard, W., Negative membership, Notre Dame Journal of Formal Logic 31
(1990), pp. 346–368.

[7] Cohen, D. and J. Muylaert-Filho, Introducing a calculus for higher-order
multiset programming, in: Coordination Languages and Models, LNCS 1061,
1996, pp. 124–141.

[8] Le Métayer, D., Higher-order multiset programming, in: A. M. S. (AMS), editor,
Proc. of the DIMACS workshop on specifications of parallel algorithms, Dimacs
Series in Discrete Mathematics 18, 1994.

[9] Loeb, D., Sets with a negative number of elements, Advances in Mathematics
91 (1992), pp. 64–74.

[10] Păun, G., Computing with membranes, Journal of Computer and System
Sciences 61 (2000), pp. 108–143.

14

DCM 2005 Preliminary Version

An Universal Accepting Hybrid Network of
Evolutionary Processors

Florin Manea 1

Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

Carlos Mart́ın-Vide 2

Research Group on Mathematical Linguistics, Rovira i Virgili University
Pça Imperial Tàrraco 1, 43005 Tarragona, Spain

Victor Mitrana 2

Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

and
Research Group on Mathematical Linguistics, Rovira i Virgili University

Pça Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract

We propose a construction of an accepting hybrid network of evolutionary processors
(AHNEP) which behaves as a universal device in the class of all these devices.
We first construct a Turing machine which can simulate any AHNEP and then
an AHNEP which simulates the Turing machine. We think that this approach
can be applied to other bio-inspired computing models which are computationally
complete.

Key words: networks of evolutionary processors, Turing machine,
universality

1 Introduction

The line of research discussed in this paper lies among a wide range of com-
putational models rooted in molecular biology [13]. A few words about the

1 Email: flmanea@funinf.cs.unibuc.ro
2 Email: {carlos.martin,vmi}@urv.net

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Manea, Martin-Vide, Mitrana

history of introducing the model discussed here. A rather well-known archi-
tecture for parallel and distributed symbolic processing, related to the Con-
nection Machine [9] as well as the Logic Flow paradigm [7] consists of several
processors, each of them being placed in a node of a virtual complete graph,
which are able to handle data associated with the respective node. Each node
processor acts on the local data in accordance with some predefined rules, and
then local data becomes a mobile agent which can navigate in the network fol-
lowing a given protocol. Only that data which can pass a filtering process can
be communicated to the other processors. This filtering process may require
to satisfy some conditions imposed by the sending processor, by the receiving
processor or by both of them. All the nodes send simultaneously their data
and the receiving nodes handle also simultaneously all the arriving messages,
according to some strategies, see, e.g., [8,9].

Starting from the premise that data can be given in the form of words,
Csuhaj-Varjú & Salomaa introduced in [5] a concept called network of paral-
lel language processors with the aim of investigating this concept in terms of
formal grammars and languages. In [1], this concept was modified in a way
inspired from cell biology. Each processor placed in the nodes of the network is
a very simple processor, an evolutionary processor. This is not a real, existing
object but a mathematical concept. By an evolutionary processor it is meant a
processor which is able to perform very simple operations, namely formal lan-
guage theoretic operations that mimic the point mutations in a DNA sequence
(insertion, deletion or substitution of a pair of nucleotides). More generally,
each node may be viewed as a cell having genetic information encoded in DNA
sequences which may evolve by local evolutionary events, namely point muta-
tions. Each node is specialized just for one of these evolutionary operations.
Furthermore, the data in each node is organized in the form of multisets of
words (each word appears in an arbitrarily large number of copies), and all
copies are processed in parallel such that all the possible events that can take
place do actually take place. From the biological point of view, it cannot be
expected that the components of any biological organism evolve sequentially
or the cell reproduction may be modeled within a sequential approach. Cell
state changes are modeled by rewriting rules like in formal grammars. The
parallel nature of the cell state changes is modeled by the parallel execution
of the symbols rewriting according to the rules applied. Consequently, hybrid
networks of evolutionary processors might be viewed as bio-inspired computing
models. Obviously, the computational process described here is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we
have considered might be interpreted as mutations and the filtering process
might be viewed as a selection process. Recombination is missing but it was
asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [15]. Furthermore,
we are not concerned here with a possible biological implementation, though
a matter of great importance.

16

Manea, Martin-Vide, Mitrana

Our mechanisms introduced in [1] are further considered in a series of sub-
sequent works [2,12] as language generating devices and their computational
power in this respect is investigated. On the other hand, this model is con-
sidered as an accepting device in [11], where a new characterization of NP
is obtained, as well as a problem solver in [12,10], where a few NP-complete
problems are solved in linear time with polynomially bounded resources. The
aforementioned models, besides the mathematical motivation, may also have
a biological one. Cells always form tissues and organs interacting with each
other either directly or via the common environment.

In this paper, we propose a construction of an accepting hybrid network
of evolutionary processors which behaves as a universal device in the class of
all these devices. We first construct a Turing machine which can simulate
any AHNEP and then an AHNEP which simulates the Turing machine. The
construction of the Turing machine is presented here while for the construction
of the AHNEP the reader is referred to [11]. This result together with the fact
that AHNEP is a deterministic and computationally complete device inspired
from cell biology and amenable to be used as a problem solver (see [10], where
a possible implementation of AHNEP using WWW is discussed) suggests the
possibility to construct a sort of “tissue-like computer”.

2 Basic definitions

We start by summarizing the notions used throughout the paper. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is
written card(A). Any sequence of symbols from an alphabet V is called word
(string) over V . The set of all words over V is denoted by V ∗ and the empty
word is denoted by ε. The length of a word x is denoted by |x| while alph(x)
denotes the minimal alphabet W such that x ∈ W ∗.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both
a and b are not ε; it is a deletion rule if a 6= ε and b = ε; it is an insertion rule
if a = ε and b 6= ε. The set of all substitution, deletion, and insertion rules
over an alphabet V are denoted by SubV , DelV , and InsV , respectively.

For two disjoint and nonempty subsets P and F of an alphabet V and a
word w over V , we define the predicates:
• ϕ(1)(w; P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
• ϕ(2)(w; P, F) ≡ alph(w) ⊆ P
• ϕ(3)(w; P, F) ≡ P ⊆ alph(w) ∧ F 6⊆ alph(w)
• ϕ(4)(w; P, F) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.

An evolutionary processor over V is a tuple (M, PI, FI, PO, FO), where:
– Either M is a set of substitution, deletion or insertion rules over the alpha-
bet V . Formally: (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M
represents the set of evolutionary rules of the processor. As one can see, a
processor is “specialized” in one evolutionary operation, only.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-

17

Manea, Martin-Vide, Mitrana

sor, while PO,FO ⊆ V are the output permitting/forbidding contexts of the
processor. Informally, the permitting input/output contexts are the set of
symbols that should be present in a string, when it enters/leaves the proces-
sor, while the forbidding contexts are the set of symbols that should not be
present in a string in order to enter/leave the processor.

We denote the set of evolutionary processors over V by EPV .

An accepting hybrid network of evolutionary processors (AHNEP for short)
is a 7-tuple Γ = (V, U,G,N, α, β, xI , xO), where:
• V and U are the input and network alphabets, respectively, V ⊆ U .
• G = (XG, EG) is an undirected graph, called the underlying graph of the
network. In this paper, we consider complete AHNEPs, i.e. AHNEPs having
a complete underlying graph denoted by Kn, where n is the number of vertices.
• N : XG −→ EPU is a mapping which associates with each node x ∈ XG the
evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on
the words existing in that node. Informally, this indicates if the evolutionary
rules of the processor are to be applied at the leftmost end of the string, for
α = l, at the rightmost end of the string, for α = r, or at any of its position,
for α = ∗.
• β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters of a
node. More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·; PIx, F Ix),
output filter: τx(·) = ϕβ(x)(·; POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of words of L that can pass the input (resp. output) filter of x.
• xI and xO ∈ XG is the input node, and the output node, respectively, of the
AHNEP.

A configuration of an AHNEP Γ as above is a mapping C : XG −→ 2V ∗

which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at
a given moment. A configuration can change either by an evolutionary step
or by a communication step. When changing by an evolutionary step, each
component C(x) of the configuration C is changed in accordance with the set
of evolutionary rules Mx associated with the node x and the way of applying
these rules α(x). Formally, we say that the configuration C ′ is obtained in
one evolutionary step from the configuration C, written as C =⇒ C ′, iff

C ′(x) = M
α(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG

sends one copy of each word it has, which is able to pass the output filter of x,
to all the node processors connected to x and receives all the words sent by any
node processor connected with x providing that they can pass its input filter.
Formally, we say that the configuration C ′ is obtained in one communication

18

Manea, Martin-Vide, Mitrana

step from configuration C, written as C ` C ′, iff

C ′(x) = (C(x)− τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Note that words which leave a node are eliminated from that node. If they
cannot pass the input filter of any node, they are lost.

Let Γ be an AHNEP, the computation of Γ on the input word w ∈ V ∗

is a sequence of configurations C
(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial

configuration of Γ defined by C
(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG,

x 6= xI , C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 ` C

(w)
2i+2, for all i ≥ 0. By the previous def-

initions, each configuration C
(w)
i is uniquely determined by the configuration

C
(w)
i−1. Otherwise stated, each computation in an AHNEP is deterministic. A

computation as above immediately halts if one of the following two conditions
holds:

(i) There exists a configuration in which the set of words existing in the
output node xO is non-empty. In this case, the computation is said to be an
accepting computation.

(ii) There exist two consecutive identical configurations.
In the aforementioned cases the computation is said to be finite. The language
accepted by Γ is

L(Γ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

3 Encoding complete AHNEPs

In this section we describe a way of encoding an arbitrary AHNEP using the
fixed alphabet

A = {$, #, r, l, ∗, (1), (2), (3), (4), 0, 1, 2, •,→}.
Let Γ = (V, U,Kn, N, α, β, xI , xO) be an AHNEP, where
– V = {a1, a2, . . . , am},
– U = {a1, a2, . . . , ap}, p ≥ m,
– the nodes of Kn are x1, x2, . . . , xn, with x1 = xI and x2 = xO.

We encode every symbol ai of U , and denote this encoding by < ai >, in the
following way:

< ai >=

 10i, 1 ≤ i ≤ m

20i, m + 1 ≤ i ≤ p

Given w, a word over U as above, we define its encoding < w > in the following
way:
< ε >= 1, < b1b2 . . . bk >=< b1 >< b2 > . . . < bk >, k ≥ 1, bi ∈ U, 1 ≤ i ≤ k.

Let L ⊆ U∗ be a finite language, L = {w1, . . . , wk}. We encode this language
by the word < L >= • < w1 > • < w2 > • . . . • < wk > •. The empty
language is encoded by < ∅ >= •.

As a direct consequence of the above, we describe how evolutionary rules
are encoded:

19

Manea, Martin-Vide, Mitrana

– Substitution: a → b, a, b ∈ V is encoded as < a >→< b >;
– Insertion: ε → a, a ∈ V is encoded as 1 →< a >;
– Deletion: a → ε is encoded as < a >→ 1.
We denote the encoding of the evolutionary rule r by < r >. A set of evolu-
tionary rules: R = {r1, . . . , rm} is encoded:

< R >= • < r1 > • < r2 > • . . . • < rm > •
For each node x we set
< N(x) >= # < Mx > # < PIx > # < FIx > # < POx > # < FOx > #,

and < x >= #α(x) < N(x) > β(x)#.

We now describe the way Γ is encoded. This is:
< Γ >= $ < Kn > $ < x1 > $ < x2 > $. . . $ < xn >, where < Kn >= 2n.

4 Construction of a universal AHNEP

In this section we will prove that there exists an AHNEP ΓU , such that if the
input word of ΓU is < Γ >< w >, for some AHNEP Γ and w the followings
hold:
• ΓU halts on the input < Γ >< w > if and only if Γ halts on the input w.
• < Γ >< w > is accepted by ΓU if and only if w is accepted by Γ.

The first step of this construction is to define a Turing Machine that be-
haves as described in the next theorem.

Theorem 4.1 There exists a Turing Machine TU , with the input alphabet A,
satisfying the following conditions on any input < Γ >< w >, where Γ is an
arbitrary AHNEP and w is a word over the input alphabet of Γ:
• TU halts on the input < Γ >< w > if and only if Γ halts on the input w.
• < Γ >< w > is accepted by TU if and only if w is accepted by Γ.

Proof: We describe the way TU is obtained. Let T ′
U be a 4-tapes Turing

Machine, with the tapes labeled W, X, Y, Z. The algorithm that this machine
implements is the following:
Initialization:
On tape W it is found the input word: < Γ >< w >. We assume that Γ =
(V, U,Kn, N, α, β, xI , xO), the nodes of Kn being x1, x2, . . . , xn, with x1 = xI

and x2 = xO. We copy on tape X the encoding of the graph Kn. This means
that on tape X we will have n occurrences of the symbol 2. This can be done
by copying the part of < Γ > between the first and the second occurrence of
$. Each symbol 2 on this tape will be used to keep track of the node that is
processed at a given moment. On tape Y we construct the initial configuration
of Γ. This is carried out in the following way:

– first we write n + 1 symbols $ on tape Y , if on tape X are n symbols 1,

– then, between the first two occurrences of $ on tape Y we copy < w >
from the input tape and place it between two bullet symbols,

– finally, put a bullet symbol between all the other occurrences of the
symbol $.

20

Manea, Martin-Vide, Mitrana

To summarize, the content of the tape Y will be:

$• < w > •$ • $ • . . . • $ • $.

Our strategy is the following:

1. The encoding of the configuration of the i-th node will be memorized
between the i-th and (i + 1)-th occurrences of symbol $ on tape Y .

2. Tapes Y and Z, the latter containing initially n + 1 symbols $, will be
used in the simulation of both evolutionary and communication steps.

3. The Evolution and Communication phases run alternatively one after
another both being preceded by the Acceptance phase.
Evolution:
We assume that on tape Y we have the encoding of a configuration of Γ
(assumption that holds after the Initialization phase). First, we transform
tape Z into $ • $ • $ • . . . • $ • $ and mark the leftmost unmarked symbol 2
on tape X. Assume that, after marking such a symbol, there are exactly k
marked symbols on the tape X. We place the head of tape W on the (k+1)-th
symbol $ on this tape, and the heads of tapes Y and Z on the k-th symbol $.
It is not hard to see that the head of tape W is placed at the beginning of the
encoding of the node xk and the head of tape Y is placed at the beginning of
the encoding of the configuration C(xk).

We now store in the current state α(xk) and read from tape W the encoding
of the first evolutionary rule of xk. Let us assume that this encoding is the
word sl → sr, sl; if sl 6= 1, then we consider one by one all words in the
encoding of C(xk) and for each of them we proceed as follows:

(I) If α(xk) = ∗, then look for the first occurrence of sl.

(II) If no such occurrence is found insert the word followed by a bullet symbol
on tape Z.

(III) If an occurrence of sl was found, then proceed with one of the following
tasks:

(i) replace sl by sr, provided that sr 6= 1,
(ii) delete sl, provided that sr = 1 and the obtained word is not empty,
(iii) replace sl by 1, otherwise.

(IV) Insert the word obtained at (III) followed by a bullet symbol on tape Z.
Look for the next occurrence of sl in the original word and perform (III)
until all occurrences of sl were found.

(V) If α(xk) = l, then check whether the word starts with sl. If this is not the
case, perform (II), else perform (III) and insert the obtained word followed
by a bullet symbol on tape Z.

(VI) If α(xk) = r, then check whether the word ends with sl. If this is not the
case, perform (II), else perform (III) and insert the obtained word followed
by a bullet symbol on tape Z.

If sl = 1, then we consider one by one all words in the encoding of C(xk) and

21

Manea, Martin-Vide, Mitrana

for each of them we proceed as follows:

(I) If α(xk) = ∗, then look for the first occurrence of 1 or 2.

(II) Insert sr before this occurrence and insert the obtained word followed by a
bullet symbol on tape Z.

(III) Repeat (II) for all occurrences of 1 and 2 in the original word.

(IV) Append sr at the end of the original word and insert the new word followed
by a bullet symbol on tape Z.

(V) If α(xk) = l, then insert sr before the first occurrence of 1 or 2 and insert
the obtained word followed by a bullet symbol on tape Z.

(VI) If α(xk) = r, then append sr at the end of the word and insert the new
word followed by a bullet symbol on tape Z.

We repeat the above process for all evolutionary rules of xk.

The we mark the (k + 1)-th symbol 2 on tape X and move on the head
of tape W on the (k + 2)-th symbol $ on this tape, and the heads of tapes Y
and Z on the (k + 1)-th symbol $. For the new configuration of the Turing
machine we proceed with the process described above.

When there are no more symbols to be marked on tape X, we unmark all
the symbols and keep one copy only of the identical words existing on tape Z
between any pair of symbols $. In this moment, on the tape Z it is found the
encoding of the configuration obtained in an evolutionary step of Γ from the
configuration encoded on the tape Y .

We now move to the Communication phase.
Communication:
First, we transform tape Z into $ • $ • $ • . . . • $ • $ and mark the leftmost
unmarked symbol 2 on tape X. Assume that, after marking such a symbol,
there are exactly k marked symbols on the tape X. We place the head of tape
W on the (k + 1)-th symbol $ on this tape, and the heads of tapes Y and Z
on the k-th symbol $.

In the current state we memorize the way filters are used (which is encoded
in the last symbol of < xk > before #) and read the sets defining the output
filter of xk. Since the filters defined by random-context conditions based on
finite sets of symbols, it is easy to check whether or not a word from C(xk) on
tape Z verifies the condition imposed by the output filter. All the words which
cannot pass the output filters are marked on tape Z and inserted followed by
a bullet symbol on tape Y . After this operation is carried out for all words of
C(xk), we repeat the process marking a new symbol on tape X.

When there are no more symbols to be marked on the tape X we restore
the original content of tape X. In this moment, on the tape Z are placed n
words representing the encoding of configuration after the last evolutionary
step some words in these sets being marked. The marked subwords in every
< C(x) > are exactly marked encoding of the words that could not leave the
node x. Moreover, tape Y contains n words encoding the sets of words that

22

Manea, Martin-Vide, Mitrana

could not leave the nodes.

Again, we mark the leftmost unmarked symbol 2 on tape X; assume that,
after marking such a symbol, there are exactly k marked symbols on the tape
X. We place the head of tape W on the (k + 1)-th symbol $ on this tape, the
head of tape Y on the k-th symbol $, and that of tape Z on the first symbol
$.

Now we read the sets defining the input filter of xk. Then we check whether
or not the unmarked words from C(x1), C(x2), . . . , C(xn) satisfy the condition
imposed by the input filter of xk. All these words are inserted, followed by a
bullet symbol, on tape Y . When the process is complete we go on and mark
another symbol on tape X, and resume the process on tape Z. When no
symbol on tape X can be marked anymore, restore the initial content of this
tape, keep one copy only of the identical words existing on tape Y between
any pair of symbols $, and unmark all symbols on tape Z. In this moment,
on the tape Y it is found the encoding of the configuration obtained in a
communication step of Γ from the configuration encoded on the tape Z.
Acceptance:
If the configuration associated with xO after an evolutionary or communication
step is not empty, the computation stops and our machine accepts the input
word. Otherwise, if, before an evolutionary or communication step, the words
from tapes Y and Z are identical, the computation also stops, but the input
word is not accepted.

Clearly, all the operations above can be actually implemented formally by
a Turing Machine. We obtain that T ′

U implements the desired behavior. From
a classical result, it follows that there exist a 1-tape Turing Machine, TU , with
the same behavior as T ′

U . This concludes the proof of the theorem. 2

The final step of the construction of a universal AHNEP is based on the
following theorem proved in [11]:

Theorem 4.2 [11] For any Turing machine M recognizing a language L there
exists an AHNEP Γ accepting the same language L.

Moreover, from the proof of the above theorem it follows that the AHNEP
Γ halts on exactly the same input words as M does. Consequently, we can
construct an AHNEP ΓU that implements the same behavior as TU which is
the universal AHNEP. Therefore, we have shown:

Theorem 4.3 There exists an AHNEP ΓU , with the input alphabet A, sat-
isfying the following conditions on any input < Γ >< w >, where Γ is an
arbitrary AHNEP and w is a word over the input alphabet of Γ:

• ΓU halts on the input < Γ >< w > if and only if Γ halts on the input w.

• < Γ >< w > is accepted by ΓU if and only if w is accepted by Γ.

23

Manea, Martin-Vide, Mitrana

References

[1] J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Solving NP-complete
problems with networks of evolutionary processors, IWANN 2001 (J. Mira, A.
Prieto, eds.), LNCS 2084 (2001), 621–628.

[2] J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Networks of
evolutionary processors, Acta Informatica 39(2003), 517-529.

[3] J. Castellanos, P. Leupold, V. Mitrana, Descriptional and computational
complexity aspects of hybrid networks of evolutionary processors. Theoret.
Comput. Sci. 330, 2(2005), 205-220.

[4] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems. Gordon
and Breach, 1993.

[5] E. Csuhaj-Varjú, A. Salomaa, Networks of parallel language processors. New
Trends in Formal Languages (G. Păun, A. Salomaa, eds.), LNCS 1218, Springer
Verlag, 1997, 299 - 318.

[6] E. Csuhaj-Varjú, A. Salomaa, Networks of Watson-Crick D0L systems. Proc.
International Conference Words, Languages & Combinatorics III (M. Ito, T.
Imaoka, eds.), World Scientific, Singapore, 2003, 134 - 150.

[7] L. Errico, C. Jesshope, Towards a new architecture for symbolic processing.
Artificial Intelligence and Information-Control Systems of Robots ’94 (I.
Plander, ed.), World Scientific, Singapore, 1994, 31 - 40.

[8] S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures
for AI: NETL, THISTLE and Boltzmann machines. Proc. AAAI National Conf.
on AI, William Kaufman, Los Altos, 1983, 109 - 113.

[9] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.

[10] F. Manea, C. Martin-Vide, V. Mitrana, Solving 3CNF-SAT and HPP in Linear
Time Using WWW, MCU 2004, LNCS 3354 (2005), 269–280.

[11] M. Margenstern, V. Mitrana, M. Perez-Jimenez, Accepting hybrid networks of
evolutionary processors, Pre-proc. DNA 10, 2004, 107–117.

[12] C. Martin-Vide, V. Mitrana, M. Perez-Jimenez, F. Sancho-Caparrini, Hybrid
networks of evolutionary processors, Proc. of GECCO 2003, LNCS 2723 (2003),
401 - 412.

[13] G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

[14] G. Păun, Membrane Computing. An Introduction. Springer Verlag, Berlin, 2002.

[15] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang, R. Cedergren, Gene
order comparisons for phylogenetic inference: Evolution of the mitochondrial
genome. Proc. Natl. Acad. Sci. USA, 89(1992), 6575 - 6579.

24

DCM 2005 Preliminary Version

Token-Passing Nets: Call-by-Need for Free

François-Régis Sinot 1,2

LIX, École Polytechnique, 91128 Palaiseau, France

Abstract

Recently, encodings in interaction nets of the call-by-name and call-by-value strate-
gies of the λ-calculus have been proposed. The purpose of these encodings was to
bridge the gap between interaction nets and traditional abstract machines, which
are both used to provide lower-level specifications of strategies of the λ-calculus,
but in radically different ways. The strength of these encodings is their simplic-
ity, which comes from the simple idea of introducing an explicit syntactic object
to represent the flow of evaluation. In particular, no artifact to represent boxes
is needed. However, these encodings purposefully follow as closely as possible the
implemented strategies, call-by-name and call-by-value, hence do not benefit from
the ability of interaction nets to easily represent sharing. The aim of this note is to
show that sharing can indeed be achieved without adding any structure. We thus
present the call-by-need strategy following the same philosophy, which is indeed not
any more complicated than call-by-name. This continues the task of bridging the
gap between interaction nets and abstract machines, thus pushing forward a more
uniform framework for implementations of the λ-calculus.

1 Introduction

Interaction nets (INs) [4] are a graphical paradigm of computation that makes
all the steps in a computation explicit and expressed uniformly. In particular,
sharing is possible (as opposed to terms) and is dealt with explicitly (as op-
posed to termgraphs). Locality and strong confluence of reduction also make
interaction nets well-suited as an intermediate formalism in the implementa-
tion of programming languages. However, despite their qualities and their
popularity among theoreticians, it is sad to notice that they are less widely
used by implementors of real-world programming languages. While it is dif-
ficult to say why, it is very probable that works such as those on optimal
reduction have led some to think of interaction nets as a theoreticians-only

1 Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS,
École Polytechnique, INRIA, Université Paris-Sud.
2 Email: frs@lix.polytechnique.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sinot

tool. It might thus be worth it to bridge the gap between interaction nets and
traditional tools such as abstract machines.

Interaction nets have been used for the implementation of optimal re-
duction [5,3,2] and for other efficient (non-optimal) implementations of the
λ-calculus [7,8]. All of the above encodings of the λ-calculus have in common
that a β-redex is always translated to an active pair (i.e. a redex in interaction
nets), hence, paradoxically, while all reductions are equivalent, there is still
the need for an external interpreter to find the redexes and manage them,
which is typically implemented by maintaining a stack of redexes [9]. The fact
that different β-reductions may be interleaved also has the nasty consequence
that the encodings need to simulate boxes in a more or less complex and costly
way.

On the contrary, in [10] as well as in this paper, the encodings stick as
closely as possible to traditional strategies. In particular, they ensure that
essentially only one reduction is possible at a time. This is simpler to imple-
ment and avoids the need for boxes. These encodings are based on the idea
of a single evaluation token, which is a standard interaction agent, walking
through the term as an evaluation function would do. They are thus very
natural and easy to understand.

In [10] the encodings are in standard interaction nets, featuring a standard
agent called the evaluation token. Reductions are essentially triggered by the
evaluation token, whose unicity is guaranteed, hence reduction is essentially
deterministic. On the other hand, some restrictions of interaction nets are
tailored to ensure strong confluence, and thus are no longer necessary if all
reductions are triggered by a unique token.

In this paper, we want to apply the same technology to the call-by-need
strategy. This will force us to abandon the restriction to Lafont’s interaction
nets, as explained below, and adopt Alexiev’s formalism of interactions nets
with multiple principal ports [1], or simply nets. Still, since reduction is
directed by a unique token, evaluation is fully deterministic.

Call-by-need was introduced by Wadsworth [11]. The idea is relatively
intuitive: a subterm should be evaluated only if it is needed, and if so, it
should be evaluated only once. And so is the original formulation, in terms of
graph rewriting. There have been several attempts to formalise this idea in
different ways, sometimes with some loss of intuitions. In contrast with these
approaches, we present another graph-based formalisation, making explicit at
the object-level the rewrite strategy used in [11]. Our presentation is thus
more primitive than other works; we therefore prefer to refer to the intuitive
definition of Wadsworth (in terms of graphs) rather than prove properties with
respect to any of the latter formalisms, contrasting with the approach of [10].
The encoding will thus be direct. It can be seen as a graph-based abstract
machine, which is still strikingly close to a term representation. The encoding
of terms is almost the same as for call-by-name and reduction rules are not
much more complicated, thus sharing is indeed obtained “for free”.

26

Sinot

The rest of this paper is structured as follows. In Section 2, we recall some
background on net rewriting. We give the encoding of terms in Section 3, the
evaluation rules in Section 4 and a few properties in Section 5. We conclude
in Section 6.

2 Nets

Nets have been introduced in [1] under the name interaction nets with multiple
principal ports. They are roughly interaction nets [4], but where the agents
are allowed to have any number of principal ports, instead of just one.

A net is a graph (not necessarily connected), whose edges are binary (i.e.
they are not hyperedges) and unlabelled and whose vertices are labelled, have
a fixed arity and are called agents. The attachments points of agents are
called ports. Each agent has a fixed number of principal ports, depicted by an
arrow; the other ports are called auxiliary. The edges of the graph connect
agents together at the ports such that there is only one edge at every port.
The ports of an agent that are not connected to another agent are called free.
Nets without agents (i.e. only with edges) are allowed and are called wirings;
the extremes of wirings are also called free ports.

Two agents connected by principal ports on both sides form an active
pair or redex. A net rewrite rule may replace an active pair, by an arbitrary
net, provided that all free ports are preserved during reduction. This ensures
that reduction is local, i.e. only the part of the net involved in the rewrite is
modified.

We use the notation =⇒ for the one-step reduction relation and =⇒∗ for
its transitive and reflexive closure. If a net does not contain any active pairs
then we say that it is in normal form. Note that in general, no property of
confluence can be expected from such a system.

If all agents in a net system have exactly one principal port and at most
one rule can be applied to any active pair, then it is a system of interaction
nets [4]. In this case, reduction is strongly confluent.

3 Encoding of Terms

The translation T (·) of λ-terms into interaction nets is very natural. We
basically represent terms by their syntax tree, where we group together several
occurrences of the same variable by agents s (corresponding to sharing) and
bind them to their corresponding λ node (this is sometimes referred to as a
backpointer). The nodes for abstraction and application are agents λ and a
with three ports; their principal port is directed towards the root of the term.
Note that in traditional encodings, the application agent looks towards its
left, so that interaction with an abstraction is always possible. Here, on the
contrary, terms are translated to packages [6] and in particular there will be
no spontaneous reduction, something will have to trigger them: the evaluation

27

Sinot

token.

This is essentially the same encoding as in [10]. The only difference is that
agents s representing sharing have two principal ports oriented upwards, so
that they will not perform any copy before the evaluation token reaches them.
In [10], these agents have one principal port oriented downwards, so that they
can readily perform copying right after a β-reduction. These are in fact the
agents c introduced below.

Variables. We consider only closed terms (open terms can be dealt with as
in [10]), hence variables are not translated as such. They will simply be
represented by edges between their binding λ and their grouped occurrence
in the body of the abstraction, as explained below.

Application. The translation T (t u) of an application t u is simply an inter-
action agent a whose principal port points at the root, and with T (t) and
T (u) linked to its two auxiliary ports. If t and u share common free vari-
ables, then s agents (representing sharing) collect these together pairwise so
that a single occurrence of each free variable occurs amongst the free edges
(only one such copy is represented on the figure). Note that s agents have
two principal ports oriented upwards, so that copy will not begin before an
agent (the evaluation token) arrives from the top. These will be the only
agents of the system with more than one principal port.

T (t) T (u)

����
a
6

· · · · · ·

Q
QQ

�
��

����
s

@@ ���I

Abstraction. If λx.t is an abstraction, T (λx.t) is obtained by introducing
an agent λ, and simply linking its right auxiliary port to T (t) and its left
one to the unique wire corresponding to x in T (t). If x does not appear in
t, then the left port of the agent λ is linked to an agent ε.

6

����
λ

T (t)

Q
Q

· · ·

or

6

����
λ

T (t)

Q
Q

· · ·

����
ε

�
��

To sum up, we represent λ-terms in a very natural way. In particular, there
is no artifact to simulate boxes. Another point worth noticing is that, because
of the explicit link between a variable and its binding λ, α-conversion comes
from free, as it is often the case in graphical representations of the λ-calculus.

28

Sinot

So far, we have only introduced agents λ and a strictly corresponding to the
λ-calculus, as well as agents ε and s for the explicit resource managements
necessary (and desirable: we do not want to hide such important things) in
net rewriting. Also remark that the translation of a term has no active pair,
hence is in normal form, whatever interaction rules are allowed. Moreover, it
has exactly one principal port, at the root.

4 Evaluation by Interaction

The difference between call-by-name and call-by-need is only visible when
sharing is involved. Consequently, the part of the encoding that does not deal
with it is exactly the same as in [10] (Section 4.1). There is no reason either
to change the way copying and erasing are done (Section 4.3); the difference
is only on when copying should occur, i.e. when we should activate a sharing
agent into a copying agent (Section 4.2).

4.1 Linear part

We introduce two new unary agents ⇓ and ⇑. To start the evaluation, we
simply build the following net, that we will denote ⇓T (t).

T (t)

6

����
⇓
?

⇑T (t) will be a net built in the same way, but with a ⇑ agent instead, with
its principal port directed towards the root. In particular, ⇑T (t) is always a
net in normal form. Relatively good intuition is carried by calling ⇓ “eval”
and ⇑ “return”.

As for call-by-name, when we evaluate a term beginning by a λ, we should
return that term:

����
λ

@�

6

����
⇓
? =⇒

����
λ

@�

6

����
⇑
6

To evaluate a term whose head symbol is an application, we should first
evaluate its left subterm. In other words, we should move the evaluation token
to the left of the application. We also rename the agent a to @, which is still
representing an application, but with its principal port no longer pointing to
the root but to the left, so that interaction will be possible when the evaluation
token returns.

29

Sinot

����
a

@�

6

����
⇓
? =⇒ ����

@
@�

�
	

����
⇓
?

Finally, when the agent ⇑ returns from a successful evaluation to a @,
then we know for sure that there is a λ just below the ⇑, and a β-reduction
should be performed. Due to the restriction to binary interaction, this takes
two steps:

����
@

@�
�

	
�����

⇑

=⇒ ����
@

@��	

����
λ

����
@

�
�

�
	 @

@�

=⇒

����
⇓
?

We link the variable port of the λ to the argument port of the @, which
initiates the substitution; and we pursue evaluation on the body of the ab-
straction. This is the core of the interaction net machinery for linear λ-terms;
it is the same as for call-by-name.

4.2 Sharing

Sharing is represented by agents s. When the evaluation token reaches an
agent s that means that evaluation of the shared subterm is required. This is
done very simply by moving the evaluation token down to the shared subterm.
The agent s is then renamed to an agent s′ looking down, so that interaction
will be possible when the token returns. We also have to remember if the
token comes from the left or from the right of the agent s, in order to resume
evaluation from the same position. This is why we in fact introduce agents s′

l

and s′
r.

����
⇓

R
������

s
@

@
I

=⇒
����
s′

l

�@

?

����
⇓
?

����
⇓

�
�

	
�����

s
@I

=⇒
����
s′

r

�@

?

����
⇓
?

30

Sinot

When the token returns to an agent s′, then we initiate the copying process
with a c agent and resume evaluation from the original position (left or right,
as remembered in the agent).

����
s′

l

�@

?

����
⇑
6

=⇒ ����
⇓

R
�����

c

?

@
@

����
s′

r

�@

?

����
⇑
6

=⇒ ����
⇓

	�
�����

c

?

@

These two rules produce ⇓ agents, but they could equivalently produce ⇑
agents: we know that the agent under the initial ⇑ is a λ (possibly after some
copying), so the c agent in the right-hand side of the rule will indeed copy that
λ, and the ⇓ agent will be changed into a ⇑ agent. The interest of choosing to
produce a ⇓ instead of a ⇑ is to force copying at that point instead of delaying
it further.

Remark 4.1 Because of our encoding and because we follow a normal order
strategy (we always go left in an application), it will often be the case that the
token reaches a s on its left port. However, this is not always true, for instance
in the term (λx.(λy.λz.z y) x x) (λu.u). This is why we have to abandon the
restriction to interaction nets.

4.3 Copying, erasing

Copying and erasing are done in a classical way, by agents ε, c and δ. The
auxiliary agent δ is introduced to duplicate abstractions, as explained below.
The agent ε erases any agent and propagates according to the following schema
(where α represents any agent except s):

����
ε

����
α

?
6

� @· · ·

=⇒ ����
ε

?

· · · ����
ε

?

In general, the agent c duplicates any agent it meets. To duplicate an
abstraction, we need an auxiliary agent δ that will also duplicate any agent,
but will stop the copy when it meets another δ agent. Note that an agent c
will thus never interact with another agent c. Here, α represents any agent
except λ and s.

����
α

�· · ·@

����
c

@ �

6
? =⇒

����
α ����

α

����
c ����

c· · ·
? ?

6 6

�
�
�

@
@

@

����
λ

� @

����
c

@ �

6
? =⇒

����
λ ����

λ

����
δ ����

δ

? ?

6 6

�
�
�

@
@

@

31

Sinot

The agent δ duplicates any agent, except itself. If it interacts with itself,
it just annihilates. Here, α represents any agent except δ and s.

����
α

�· · ·@

����
δ

@ �

6
? =⇒

����
α ����

α

����
δ ����

δ· · ·
? ?

6 6

�
�
�

@
@

@

����
δ
6

����
δ

?

@�

@ �

=⇒

A c agent always tries to copy an evaluated subnet, so agents c and s never
meet (because the s would have been activated first). However, we may have
to copy an agent s inside an abstraction using a δ. We know that if the agent
s was in fact a c, there would be no problem. Hence the simplest (although
not the most efficient) option when an agent other than the evaluation token
meets an agent s is to simply activate the agent s into an agent s′′ that
behaves similarly to agents c, except that each reduction restores it into an
agent s (instead of s′′). This brings us back to the simpler framework without
agents s and helps to preserve strong confluence (see below). The details (and
pictures) are omitted. The sharing obtained is exactly call-by-need in the
usual sense (e.g. like in Haskell): no reduction is shared inside an abstraction.
A finer tuning of this issue could lead to an implementation of the fully lazy
strategy [11], but could also make the issue of matching δ’s harder.

5 Properties

Definition 5.1 A net N is said to be valid if there exists a λ-term t such that
⇓T (t) =⇒∗ N .

In a valid net, there may be several redexes involving agents c, δ or ε, however,
we have the following result.

Proposition 5.2 In a valid net there is exactly one occurrence of ⇓, ⇑ or of
a λ−@ active pair.

Proof. By induction, using the rules. 2

Classical results on packages [6] allow to state the two following properties:

Proposition 5.3 • If t is a closed λ-term, then:

T (t)

6

����
ε

?
=⇒∗ n�

�

(where the right-hand side of the rule denotes the empty net).

• If t is a closed λ-term, then:

32

Sinot

T (t)

6

����
c

@ �

?
=⇒∗

T (t)

6

T (t)

6

Rules can be partitioned into evaluation rules involving a token ⇓ or ⇑, or
an active pair λ−@, and administrative rules involving agents c, δ, ε or s′′.
Remark that it is indeed a partition.

Proposition 5.4 Reduction is strongly confluent on valid nets, i.e. if M is a
valid net such that M =⇒ P and M =⇒ Q (with P 6= Q), then there exists a
net N such that P =⇒ N and Q =⇒ N .

Proof. In a valid net, there is at most one evaluation rule applicable (by
Proposition 5.2), so at least one of the reduction is administrative. But notice
that there is no overlap between evaluation and administrative rules, so in this
case, the reductions are independent and the diverging pair can be joined by
applying the other rule. The remaining case thus involves two administrative
rules. Again, if they are applied at different places, the pair is easy to join.
The only remaining cases involve an agent s and any agent among δ, ε, s′′ on
both its principal ports. In these cases, the agent s is simply transformed into
an agent s′′, and indeed P = Q. This completes the proof. 2

Proposition 5.5 ⇓T (t) =⇒∗ ⇑T (v) if and only if t reduces to v by the call-
by-need strategy.

Proof. There are two points:

• if the issue of sharing is ignored, the strategy followed is call-by-name
(see [10]), hence by classical results, we do not evaluate a subterm unless it
is needed;

• when a shared subterm is needed, the rules for sharing are clear: the subterm
is evaluated first, and copied only afterwards (thanks to Proposition 5.3).2

6 Conclusion

We have presented a simple approach to express call-by-need in net rewriting.
The approach is so simple that it is indeed a good alternative to working with
terms. It is obtained from an encoding of call-by-name without adding any
extra structure, and without much complication. The framework of interaction
nets had to be abandoned, but no property is lost. This can be seen both as a
simple formalisation of Wadsworth original formulation, and as the basis for
a graph-based abstract machine.

33

Sinot

References

[1] Alexiev, V., “Non-deterministic Interaction Nets,” Ph.D. thesis, University of
Alberta (1999).

[2] Asperti, A., C. Giovannetti and A. Naletto, The Bologna optimal higher-order
machine, Journal of Functional Programming 6 (1996), pp. 763–810.

[3] Gonthier, G., M. Abadi and J.-J. Lévy, The geometry of optimal lambda
reduction, in: Proceedings of the 19th ACM Symposium on Principles of
Programming Languages (POPL’92) (1992), pp. 15–26.

[4] Lafont, Y., Interaction nets, in: Proceedings of the 17th ACM Symposium on
Principles of Programming Languages (POPL’90) (1990), pp. 95–108.

[5] Lamping, J., An algorithm for optimal lambda calculus reduction, in: Proceedings
of the 17th ACM Symposium on Principles of Programming Languages
(POPL’90) (1990), pp. 16–30.

[6] Lippi, S., “Théorie et pratique des réseaux d’interaction,” Ph.D. thesis,
Université de la Méditerranée (2002).

[7] Mackie, I., YALE: Yet another lambda evaluator based on interaction nets, in:
Proceedings of the 3rd International Conference on Functional Programming
(ICFP’98) (1998), pp. 117–128.

[8] Mackie, I., Efficient λ-evaluation with interaction nets, in: V. van Oostrom,
editor, Proceedings of the 15th International Conference on Rewriting
Techniques and Applications (RTA’04), Lecture Notes in Computer Science
3091 (2004), pp. 155–169.

[9] Pinto, J. S., Sequential and concurrent abstract machines for interaction nets,
in: J. Tiuryn, editor, Proceedings of Foundations of Software Science and
Computation Structures (FOSSACS), Lecture Notes in Computer Science 1784
(2000), pp. 267–282.

[10] Sinot, F.-R., Call-by-name and call-by-value as token-passing interaction nets,
in: Proceedings of the 7th International Conference on Typed Lambda Calculi
and Applications (TLCA’05), Lecture Notes in Computer Science 3461 (2005),
pp. 386–400.

[11] Wadsworth, C. P., “Semantics and Pragmatics of the Lambda-Calculus,” Ph.D.
thesis, Oxford University (1971).

34

DCM 2005 Preliminary Version

Supporting Function Calls within PELCR

Antonio Cosentino 1

Dipartimento di Informatica, Sistemi e Produzione,
Università degli Studi di Roma “Tor Vergata”, Viale del Politecnico 1, Rome, Italy

Marco Pedicini 2

Istituto per le Applicazioni del Calcolo “M. Picone”,
CNR, Viale del Policlinico 137, Rome, Italy.

Francesco Quaglia 3

Dipartimento di Informatica e Sistemistica,
Università degli Studi di Roma “La Sapienza”, Via Salaria 113, Rome, Italy.

Abstract

In [10,11], PELCR has been introduced as an implementation derived from Ge-
ometry of Interaction in order to perform virtual reduction on parallel/distributed
computing systems.

In this paper we provide an extension of PELCR with computational effects based
on directed virtual reduction [2], namely a restriction of virtual reduction [3], which
is a particular way to compute the Geometry of Interaction [5] in analogy with
Lamping’s optimal reduction, [6]. Moreover, the proposed solution preserves scal-
ability of the parallelism arising from local and asynchronous reduction as studied
in [11].

Key words: Functional Programming, Optimal Reduction, Linear
Logic, Geometry of Interaction, Virtual Reduction, Parallel
Implementation.

1 e-mail: antocos@tiscali.it
2 e-mail: marco@iac.cnr.it
3 e-mail: quaglia@dis.uniroma1.it
4 Partially supported by CNR/CNRS cooperation project n. 16251 “Interaction and Com-
plexity”, 2004-2005.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cosentino, Pedicini, Quaglia

1 Introduction

PELCR (Parallel Environment for optimal Lambda Calculus Reduction) is
a software package supporting optimal lambda calculus reduction on paral-
lel/distributed computing systems. It is devised as an interpreter for pure
lambda calculus (complete) reduction, whose development relies on the Ge-
ometry of Interaction [5] and successive results in the field of functional pro-
gramming and linear logic [3], which have shown that the reduction of lambda
terms can be mapped onto a graph rewriting technique known as Directed
Virtual Reduction (DVR), see [2]. Specifically, PELCR implements a particu-
lar strategy for DVR, referred to as Half Combustion (HC), see [10,11], which
permits great exploitation of parallelism by allowing the composition between
two edges coincident on a same node of the graph as soon as these edges be-
come available to the processor hosting that node. A set of optimisations are
also implemented within PELCR allowing a reduction of the communication
overhead, and a fair policy for distributing dynamically originated load (i.e.
new nodes and edges generated during the reduction) among processors.

Although pure lambda calculus has a variety of applications, many func-
tional programming languages tend to deviate from it in order to become
more attractive and effective for programmers, and to enrol the use of non-
functional constructs. With respect to this point, let us cite the most diffused
examples of functional languages, namely ocaml and haskell, both having ad-
ditional base types and facilities for explicit interactions with the underlying
operating system.

In this paper we show how it is possible to support similar extensions in
PELCR, without preventing the possibility to exploit parallelism (and hence
to achieve run-time effectiveness) arising from Geometry of Interaction. Our
starting point is Mackie’s work on the implementation of the Geometry of
Interaction where the author extends Girard’s algebra with extra generators
for natural numbers and for the successor function. The new generators form
an equational theory which defines a particular abstract data type.

By generalising Mackie’s approach, we extend the applicability of PELCR
as an environment for the execution of functional and imperative languages
through automatic and adaptive distribution, where the functional parts take
into account functional dependencies and where external functions, let say
x-functions for short, make calls to imperative code implementing parts less
prone to be specified in a functional language. Also, compared to Mackie’s
original proposal, which deals with functions with a single parameter, we
address the case of functions with multiple parameters.

The rest of this paper is structured as follows. In Section 2, we provide the
theoretical framework for the previously mentioned extension. In Section 3,
we present the interpretation of extended lambda calculus in dynamic graphs
with x-functions to be executed on top of directed virtual reduction. How to
support the extension within PELCR is described in Section 4. In Section 5

36

Cosentino, Pedicini, Quaglia

we give an example of code using x-functions and report experimental data
related to the course of execution time while varying the number of used
processors.

2 Geometry of Interaction and Extended L?

The extension we provide is obtained following the approach introduced by
Mackie in [7] and then expanded by Pinto in [13]. This technique can be
summarised with the addition of generators in L? with computational effects
consisting of data to be manipulated and executables to be evaluated when
interactions occur. This work explores this direction, and in fact we map those
generators onto data structures and functions defined in external libraries
implemented in C language.

Let us recall Pinto’s example, we consider a new generator S representing
the successor function S : N → N and a generator n for every integer n ∈ N.
Then a pair of specific interaction equations are given

S?n = (n + 1)S? (1)

S?S = 1 (2)

and added to the algebra L?. Note that, while the evaluation of Equation (1)
is presented as a rewriting, it has attached a computational task to compute
the result of S(n). In fact, these rules are better understood in the following
terms: we add to L? a generator S for the function and a generator N which
stands for a ground type object, a natural number in this case. Any generator
added to the algebra has a corresponding allocated memory space:

• to store its state n in the case of an object of type N, denoted by N : n

• to store a program address p in the case of a function, denoted by S : p.

So now Equations (1) and (2) can be rephrased as

(S : p)?(N : n) = (N : p(n))(S : p)?, (3)

(S : p)?(S : p) = 1. (4)

Note that p(n) is obtained by calling the function with address p with
argument stored in N, and by storing the result in the space allocated for N.

We have two kinds of problems with this approach. First, we need to
consider how to extend such an approach to functions with more than one
argument: f : A1 ×A2 × . . . Ak → B. Second, we have to consider generators
for partially evaluated functions since, as in currification, the generator F ∈ L?

associated with f , interacts with its arguments one by one.

In order to give the general form of equations (1), and (2), we introduce a
new family of generators, let say x-generators, with identifier i and constant lift
1, denoted by xi; from the algebraic point of view xi behaves like exponential
generators of lift 1, we then specify the computational task associated with
any generator, i.e. its computational effect.

For any xi we have a type τ(i) and a state(i), the state stores information

37

Cosentino, Pedicini, Quaglia

Fig. 1. Pinto’s reduction of a term involving successor ((λx.x)λa.S(a) 0)

on the type of the computational task, and on its evaluation status; essentially
we have two classes of evaluation states:

• in case of data, denoted by xi : a, xi type is a ground type and its evaluation
state is the stored value a;

• in case of functions, denoted by xi : (p, v), xi type is a functional type and
its evaluation state is given by a function pointer p and by an ordered list
of values v of length strictly lesser than the arity of the function, note that
the vector may possibly be the empty one.

For the sake of simplicity we suppose a unique ground type σ and the
arrow type constructor, so the set S of types is S := σ|σ → S. We denote
σ → (σ → . . . (σ → σ) . . .) by σn → σ.

Definition 2.1 For any xi we have that state(i) = 〈τ, p, v〉 where its type
τ = σn → σ ∈ S, p is a reference to a function code, and v = (a1, a2, . . . , am)
with 0 ≤ m < n. The case of data is treated as a particular case where
state(i) = 〈σ, null, (a1)〉.

We now introduce the definition of the Geometry of Interaction algebra
extended with x-generators. Interaction rules for x-generators are defined only
for well typed data/function; all the other types of interaction are undefined.
In Definition 2.2, and in particular in Equation (6) in Definition 2.3 below, we
suppose that xi has a functional type and xj a ground data type, moreover we
denote by si (respectively by sj) its state state(xi) = 〈σn → σ, p, (a1, . . . , am)〉
(resp. state(xj) = 〈σ, null, b〉):

Definition 2.2 For any pair of x-generators xi and xj the eval function acts
on the respective states si and sj as follows:

eval(si, sj) =

{
〈τ(i), p, ()〉 m = n− 1,

〈τ(i), p, (a1, . . . , am, b)〉 m < n− 1,

and
eval(sj, si) = 〈γ, null, p(a1, . . . an−1, b)〉,

if τ(i) = σ1, . . . , σn → γ.

The next definition extends the usual presentation of Girard’s dynamic
algebra with interactions corresponding to the evaluation of the computational
effects associated with x-generators:

Definition 2.3 The extended monoid L? of the Geometry of Interaction is

38

Cosentino, Pedicini, Quaglia

the free monoid with a morphism !(.), an involution (.)? and a zero, generated
by p, q, a family W = (wi)i of exponential generators, and a family X = (xi)i

of x-generators such that for any u ∈ L?:

a?b = δab for a, b = p, q, wi, (5)

(xi : si)
?(xj : sj) =



(xi : eval(si, sj))
? if i 6= j and

m = n− 1,

(xj : eval(sj, si))(xi : eval(si, sj))
? if i 6= j and

m < n− 1,

1 if i = j.

(6)

!(u)a = a!e(a)(u), where either a = wi either a = xi (7)

where δab is the Kronecker operator, e(a) is an integer associated with a called
the lift of a; note that e(xi) = 1 for all i, i is called the name of wi or xi

and we will often write wi,e(i) to explicitly denote the lift of the exponential
generator.

Orienting the equations (5-7) from left to right, one gets a rewriting system
which is terminating and confluent, provided that x-function calls eventually
return. The non-zero normal forms, known as stable forms, are the terms ab?

where a and b are positive (i.e., written without ?s).

Example 2.4 Let us consider the following interaction:

(x1 : (σ2 → σ, &ADD(), ()))?(x2 : (σ, null, 1))(x2 : (σ, null, 3)),

it implicates the functional generator x1 associated with function ADD() of
arity 2 from integers to integers, and reference &ADD(), and the generator x2

of a ground type for integer; it is reduced in the following way:

(x1 : (σ2 → σ, &ADD(), ()))?(x2 : (σ, null, 1))(x2 : (σ, null, 3)) →
→ (x1 : (σ2 → σ, &ADD(), (1)))?(x2 : (σ, null, 3)) →

→ (x2 : (σ, null, 4))(x1 : (σ2 → σ, &ADD(), ()))?.

3 Encoding Extended Lambda Calculus in PELCR

In the previous section, we have introduced the extension of the dynamic alge-
bra, and illustrated how to use it while considering the evaluation of arbitrary
arity functions. In this section we sketch out how to fill the gap between the
natural extension of term interpretation in the Geometry of Interaction by
Mackie and Pinto, in Figure 1, and the analogous interpretation of an arity 2
function, see Figure 2.

We have to trade-off between apparently clashing requirements:

• to have a single execution path weighted with x-generators (see Figure 3.a);

• to map multiple arity functions to nodes with multiple links (see Figure 3.b);

39

Cosentino, Pedicini, Quaglia

1

ADD

1

3
4

ADD

⊗ ⊗ ⊗

&

& &

3

Fig. 2. Reduction of the term corresponding to ((λx.x)λa.λb.ADD(a, b) 1 3)

• to execute interactions by using the parallel directed virtual reduction pro-
vided by PELCR (see Figure 3.d).

In fact, we have included in PELCR features allowing us to obtain all
the above mentioned requirements. The first step is obtained by using the
internalisation in DVR of a synchronisation scheme which reduces x-function
and arguments interaction to a linear path with the correct configuration, i.e.,
like in Example 2.4, F ?A1 . . . An. This approach appeared in a simplified form
as a construction to accommodate the conditional term of PCF, in Mackie’s
work on interaction nets, [8].

Once we have obtained a single execution path, it must be proved not
to alter global properties of directed virtual reduction, namely splitness and
square-freeness [3], which are the basic properties to prove confluence and
termination of VR.

As we show in Section 5, devoted to execution examples, although we
are forced to introduce a particular sequential evaluation pattern, the good
properties on scalability and speedup of DVR are preserved, and so DVR is
capable to exploit the available parallelism coming from functional specifica-
tion of the program. Let us note that with our technique, we can exploit
parallelism emerging from the functional part of the code, but we do not enter
in x-functions which are treated as black boxes.

4 Supporting the L? Extension within PELCR

In the original version of PELCR, only dealing with pure lambda calculus, the
basic operation executed while performing the reduction is the composition
of pair of edges coincident on a same node, see Figure 3.d). This is sup-
ported through adequate data structures maintained by PELCR to represent
the weights of the edges. These data structures are mostly based on string
representation of the weights, and those strings constitute the essential part of
the payload of each application message exchanged between distinct processes
to notify each other of the existence of new edges in the graph originated by
DVR steps.

To support the L? extension with no substantial modification of the basic
mechanisms employed by PELCR for the support to parallelism (i.e. message
aggregation and load balancing mechanisms whose benefits on the run-time

40

Cosentino, Pedicini, Quaglia

DVR

a) b)

c)

d)

3

1

3

ADD(1, .)

ADD

1

3

4
4

ADD

ADDADD

3

ADD(1, .)

ADD

3

1

ADD

3

ADD

ADD

ADD

1

3

ADD

ADD1

a′b′

[b]a [a]b

a b

Fig. 3. The reduction of (ADD 1 3)

behaviour have already been extensively tested in the context of pure lambda
calculus), and with no variation in the HC strategy, which performs DVR in a
parallel effective manner, we have extended the data structures maintained by
PELCR in a way allowing a compact representation of x-function needs to be
eventually evaluated. The representation is based on a structured data type,
namely function descriptor, which implements the state associated to x-
generators by maintaining: (i) a function pointer, allowing the retrieve of the
code associated with the function when the evaluation needs to be performed,
and (ii) a vector of structured entries, namely parameters, that, for each
parameter to be passed to the function, indicate whether the parameter has
already been stored and, in the negative case, stores the corresponding value.

The structured type function descriptor has two additional fields stor-
ing the number of arguments for the function, and the number of arguments
which have already been stored within the parameters vector. Hence, the
evaluation of the function takes place as soon as the vector records the whole
set of parameters required by the function itself. In accord with Equation (6)
in Definition 2.3, this occurs when an edge carrying a function descriptor

for a function with n parameters, which already stores n− 1 of these parame-
ters, is composed through DVR with an edge carrying an additional parameter
to be passed to the function (hence the whole set of parameters for the function
gets completed).

The type of the return value for the function and the type of the pa-
rameters can be also selected by the user through a proper macro, namely
USERTYPE. However, the current implementation of PELCR cannot cope with
parameters of pointer type. This is because, while performing DVR steps, the

41

Cosentino, Pedicini, Quaglia

#uselib "./shared.so"

#def double = \l.\k.\x.((l)k)((l)k)x

#def map = \f.\l.\k.\x.((l)\y.(k)(f)y)x

#def F1 =\x.xfunction(foo)(x)

#def FF = \l.((map)F1)(double)l

#def AA = \k.\x.((k)123)((k)10)((k)3)x

#def five = \f.\x.(f)(f)(f)(f)(f)x

((five)FF)AA

#quit

Fig. 4. Benchmark code

function descriptor and the function parameters might migrate across the
different processes, so that the function might eventually be evaluated by a
process that does not really host the buffer pointed by the parameter passed
to the function. This is the same problem appearing in standard Remote
Procedure Calls (RPCs), which require proper solutions we plan to introduce
within next releases of PELCR.

Actually, the fact that the function descriptor carries a function pointer,
instead of the whole code for the function is an optimisation allowing a re-
duced size for the application messages, especially when dealing with functions
having large size of the corresponding modules. On the other hand, this ap-
proach imposes the constraint that the function code needs to be available at
all the processes so that the function can be evaluated by any of them while
performing the reduction.

However, with respect to this point we have implemented the optimisation
of avoiding to maintain the code of all the functions possibly involved in the
reduction within main memory. Instead, a process dynamically loads the
function code whenever required in the form of a Dynamic Linking Library
(DLL).

5 Experimental Results

The experiments have been performed by using the code reported in Fig-
ure 4, which also gives an idea of the language that can be used within
PELCR. One of the main motivations for the use of PELCR is that parallelism
comes transparently for the end-user, which writes programs in a mixed func-
tional/imperative language, taking advantage of the parallelism emerging from
the functional structure and without having to explicitly use message passing
primitives. For this application, we have used an SMP computing system,
namely an IBM machine with 16 SP Power3 CPUs. The application works
on lists of integers. The list structure is encoded in lambda calculus, whilst
integers are 32bit unsigned integers, natively supported by the C compiler.

42

Cosentino, Pedicini, Quaglia

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

#CPUs

ex
ec

u
ti

o
n

 t
im

e
(s

ec
s)

Fig. 5. Execution Time Results.

The library (shared.so) provides the x-function and contains the definition
of the numerical function foo programmed in C language. The functional
program takes a list as input, and iterates, by means of an opportune Church
numeral, the application of the function FF to the initial list AA. The lambda
term FF gets a list l, builds a list obtained by concatenating l with itself and
maps the x-function foo to the list.

Note that at each iteration the list doubles in size and so the application of
the function may rise a good degree of parallelism as proved by the scalability
shown in Figure 5. The reported data are very encouraging and essentially
confirm good scalability for the execution parallelism achievable by PELCR
even when using the computational effects hereby presented.

References

[1] A. Asperti and S. Guerrini. The Optimal Implementation of Functional
Programming Languages, volume 45 of Cambridge Tracts in TCS. Cambridge
University Press, 1998.

[2] V. Danos, M. Pedicini, and L. Regnier. Directed virtual reductions. In
M. Bezem D. van Dalen, editor, LNCS 1258, pages 76–88. EACSL, Springer
Verlag, 1997.

[3] V. Danos and L. Regnier. Local and asynchronous beta-reduction (an analysis
of Girard’s EX-formula). LICS, pages 296–306. IEEE Computer Society Press,
1993.

[4] V. Danos and L. Regnier. Proof nets and the Hilbert space. In J.-Y. Girard,

43

Cosentino, Pedicini, Quaglia

Y. Lafont, and L. Regnier, editors, Advances in Linear Logic. Cambridge
University Press, 1995.

[5] J.-Y. Girard. Geometry of interaction 1: Interpretation of system F. In R. Ferro,
et al. editors Logic Colloquium ’88, pages 221–260. North-Holland, 1989.

[6] J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of
17th Annual ACM Symposium on Principles of Programming Languages. ACM,
San Francisco, California, pages 16–30, 1990.

[7] I. Mackie. The geometry of interaction machine. In POPL, pages 198–208,
1995.

[8] I. Mackie. YALE: yet another lambda evaluator based on interaction nets In
ICFP ’98: Proceedings of the third ACM SIGPLAN international conference on
Functional programming, pages 117–128, ACM, 1998.

[9] M. Pedicini. Exécution et Programmes. PhD thesis, Équipe de Logique
Mathématiques, Université de Paris 7, 1999.

[10] M. Pedicini and F. Quaglia. A parallel implementation for optimal lambda-
calculus reduction PPDP ’00: Proceedings of the 2nd ACM SIGPLAN
international conference on Principles and practice of declarative programming,
pages 3–14, ACM, 2000.

[11] M. Pedicini and F. Quaglia. PELCR: Parallel environment for optimal lambda-
calculus reduction. CoRR, cs.LO/0407055, accepted for publication on TOCL,
ACM, 2005.

[12] J. S. Pinto. Parallel implementation models for the lambda-calculus using the
Geometry of Interaction. In TLCA, pages 385–399, 2001.

[13] J. S. Pinto. Parallel Implementation with Linear Logic (Applications of
Interaction Nets and of the Geometry of Interaction). PhD thesis, École
Polytechnique, 2001.

[14] L. Regnier. Lambda-Calcul et réseaux. PhD thesis, Université Paris VII, 1992.

44

DCM 2005 Preliminary Version

Type Theory and Language Constructs
for Objects with States

H. Xu 1 and S. Yu 2

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada

Abstract

Most class-based Object-Oriented Programming Languages (OOPLs) are strongly
typed languages, which means every object created in a program is associated with
a type. However, how to add object dynamic behaviors modeled by Harel’s state-
charts into object types is a challenging task. We propose adding states and state
transition functions, which are largely unstated in object type theory, into object
type definitions and typing rules. We argue that in order to ensure the correctness
of the type system in OOPLs, the state changes of objects during their execution
should be properly defined and enforced. As a consequence, we propose our type
theory of the τ -calculus, which refines Abadi and Cardelli’s ς-calculus, in modeling
objects with their dynamic behaviors. In our proposed type theory, we also explain
that a subtyping relation between object types should imply the inclusion of their
dynamic behaviors. By adding states and state transition functions into object
types, we propose modifying programming language constructs for state tracking.
We argue that the τ -calculus with modified class definitions can be implemented
efficiently in current object-oriented programming languages.

Key words: Object types, states and state transition functions,
ς-calculus, τ -calculus, language constructs.

1 Introduction

Type theories for OOPLs have been proposed by many authors. In A Theory
of Objects [1], Abadi and Cardelli developed their object calculi (ς-calculus)
which were stated as a method loosely modeling object-based languages. The
type abstraction of object in ς-calculus is conceptually simple and basically

1 Email: hxu@csd.uwo.ca
2 Email: syu@csd.uwo.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Xu and Yu

reflects the objects in current OOPLs. However, it lacks necessary expressive-
ness in certain situations. For example, we may have a class Transmission
in which the method void turnoff (void) is included. An instance (object) of
Transmission may be in one of the following three states (status): Neutral,
Reverse, and Forward, and we assume that the method turnoff of the object
should be called legally only when the object is in the state Neutral. It would
be wrong for turnoff to be called when the object is in the state Forward or
Reverse. However, neither ς-calculus nor any other current type system can
handle such basic problems. In current type systems, any method of an object
can be legally called at any time as long as the object is still alive. The state or
status of an object is not a consideration of the type systems. Corresponding
to the real world, the set of methods of an object that can be called at a certain
time may not include all the methods of the object. It depends on what state
the object is in, which again depends on the state transitions that define the
dynamic behaviors of the object. We argue that these characteristics of object
dynamics should be reflected in object type theory. The problems related to
states and state transitions of an object may be solved in other ways, but
clearly they are part of the type system and better to be solved in the type
system.

States and state transitions in object have already been introduced in
object-oriented modeling. Statecharts were introduced by David Harel in
1987 [5] and then incorporated into object-oriented modeling methods and
languages such as OMT [10] and UML [2] to describe the dynamic behaviors
of objects. Finite state machines (FSMs), in a form directly mapped from
statecharts, have become a standard model for representing object behaviors.

Several other models also concern states and state machines in types or
object types. In a relatively early paper [14], states (not object states) were
introduced in programming languages for enhancing software reliability. In [4],
the authors proposed language features which allow objects to change class
membership dynamically and then developed a type system for their language.
However, the states mentioned in the paper are irrelevant to the states and
state transitions in statecharts. In [3], a programming model of typestates
for objects was developed. However, their type definition contains all of an
object’s fields and, thus, their object type is an implementation-dependent
entity. In [8], the authors proposed that the behavior of objects of a subtype
should also satisfies the behavior of supertype objects. But the properties
described in the paper do not directly connect to states and transitions. In
[9], the author proposed to integrate state machines and OOPLs, in which a
state of an object is represented as a set of virtual bindings rather than being a
clearly defined entity. In [11], the authors proposed typing objects with states,
but focused on formalizing non-uniform concurrent objects. Several papers
presented type-based general methods (not methods in a class) for resource
usage analysis [7] or resource usage analysis via scoped methods [15]. There
are also papers aiming to specify state machines in OOPLs [12] or to initialize

46

Xu and Yu

some kind of state-oriented programming in implementing hierarchical state
machines [13]. However, all these ideas are very different from introducing
states and state transition functions into object types.

We propose our τ -calculus for the typed system which comprises formal
system fragments. The most fundamental formal system fragments are the
object typing and subtyping rules with formally defined states and state tran-
sition functions. Our τ -calculus is viewed as an improvement of ς-calculus.
States and state transitions are being introduced as an essential part of a
class. That is, each class has its own states and state transition functions.
We also introduce programming language constructs for implementing states
and state transitions. The syntax developed for class is easy to understand
and suitable for most of OOPLs. The OOPL type checking system can then
include state tracking algorithm and provide a higher degree of program cor-
rectness excluding many object behavior errors.

The idea of introducing states and state functions into object types was
motivated by David Harel’s statecharts. However, they have become different
entities. Statecharts have been used for modeling the behaviors of objects
normally in the modeling stage and before the programming is done, but ob-
jects with states are defined in the programs which are in the implementation
stage. More importantly, a statechart models the whole status of an object,
but the states of an object defined by a programmer may reflect only a small
part of the total behaviors of the object, when states are relevant.

2 Object Types and States

During the life time of an object, the object may change into different states
and it may have different behaviors when it is in different states. As we have
described in the introduction, the set of methods of an object that can be
legally called may be different when the object is in a different state. After a
method is called, the object may be transformed into another state. The state
transition of an object (a class) can usually be described by a state diagram.

The state diagram of an object or a system is essentially a Deterministic
Finite Automaton (DFA) [6]. Hence, the state diagram of an object can be
described as M =(Q, Σ, s0, δ) where Q is the set of states; Σ is the set of
methods; s0 is the starting state - the state when an object is created; δ is the
set of transitions defined by the function δ(p, a) = q for p, q ∈ Q and a ∈ Σ.

Assume that the state diagram of Dryer and its abstract DFA model are
provided in Figure 1, where Q = {0, 1, 2, 3} and 0,1,2,3 represent the named
states of OffSlow, OffFast, SlowHeating, and FastHeating, respectively; Σ =
{l1 = chg2Fast, l2 = chg2Slow, l3 = turnOff, l4 = turnOn} and the labels
l1, l2, l3, l4 are the method names of the object Dryer in lexicographical order;
the transition function set δ is defined as: δ(0, l4) = 2, δ(0, l1) = 1, δ(1, l4) = 3,
δ(1, l2) = 0, δ(2, l3) = 0, δ(2, l1) = 3, δ(3, l3) = 1, and δ(3, l2) = 2.

For an object Dryer in a state q ∈ {0, 1, 2, 3}, if a message e ∈ Σ is received

47

Xu and Yu

OffFast

chg2Slow chg2Fast

0

1 3

2

l2l1 l1

l3

l3

l4

l4

l2

FastHeating

SlowHeating
turnOn

turnOff

turnOn

turnOff

(b)(a)

OffSlow

chg2Fast chg2Slow

Fig. 1. (a) State diagram of Dryer and (b) its abstract DFA model

(a method e is called or invoked) and δ(q, e) = p is well defined for some p ∈ Q,
we consider that the transition to p is a valid transition. Otherwise, δ(q, e),
e.g., δ(2, l4), is NOT defined - a Dryer can not be turned on while it is in state
SlowHeating. Then the set denoted by Si = {(q, p)| p, q ∈ Q ∧ δ(q, li) = p}
contains all the proper state changes for a Dryer in receiving a message labeled
by li during its execution. The attempt of state changes for Dryer may not
be satisfactory when a corresponding transition is not defined although the
method is predefined in the class. The state changes of a Dryer, resulted from
a sequence of method invocations, should be in coherence with the transitions
defined in object dynamics. Otherwise, type errors may occur and they should
be recognized by the type system.

We observe that an object type is irrelevant to the states and state tran-
sition functions of an object according to the rules in ς-calculus. As a result,
an algorithm, which is based on the rules for weak reduction in ς-calculus
and constitutes an interpreter for ς-terms, cannot exclude type errors of such
object misbehavior. For example, the algorithm used for method invocation
check in ς-calculus is defined recursively as:

Outcome(a.lj) ,
let o=Outcome(a) . (1)
in if o has form [li = ς(xi)bi{xi} i∈1..n] and j ∈ 1..n

then Outcome(bj{{o}})
else wrong

But in our proposed type theory, a method invocation a.lj reduces to the
result of the substitution of the host object for the self (or this) parameter
in the body of the method named lj only when a state transition for the
host object in the current state exists. In another word, the reduction of
a.lj � bj{{xj ← o}} for lj (j ∈ 1..n) is subject to the condition that there exists
a valid state change defined in state functions for the object in the current
state. Afterwards, the object may transform into another one. On line(1), the
statement let o=Outcome(a) implies that there exists a valid state transition
for object a to be transformed into o while the method lj is called.

We consider that the state machines composed of states and state transi-
tion functions are essential entities in construction of object types. Note that

48

Xu and Yu

the states used in this paper are clearly different from the concept of types-
tates [3,14]. Object types are different from object classes. Object types are
abstract entities which can be constructed from class definitions but leave out
the implementation details.

3 τ -Calculus for Object Types and Class Types

We start with a type system, which is composed of several formal system
fragments for object types. We give some important properties of our type
system in contrast to what have been defined in ς-calculus. Some fundamental
properties of a type system, such as the reduction theorem, are supported by
both type theories.

First, we list the syntax fragment for ∆Ob in τ -calculus. This syntax is in
fact implicit in the rules of ∆Ob and for the later fragments we do not display
the syntax explicitly.

Syntax fragment for ∆Ob

A, B ::= types

[Q, (li : Bi) :: S i∈1..n
i] object type (li distinct, Q is the set of

all states, Si is the set of valid state
transitions for method li)

a, b ::= terms

[li = τ(xi : Ai)b
i∈1..n
i] object (li distinct)

a.l method call

Similar to what in ς-calculus, fields are just a special kind of methods
and, thus, represented uniformly as methods. The method update feature in
OOPLs allows an object dynamically change its behavior in execution. This
makes the type of an object hard to trace in a type system. We do not put
this feature into discussion in this paper because it has very limited usage in
class-based OOPLs.

Definition 3.1 The states and state transitions that are associated with an
object are formally described as a triple A = (Q, Σ, SΣ):

(i) Q is the set of states. Each node in the state diagram is a state q ∈ Q.

(ii) Σ is the set of methods, i.e., Σ = {li | i = 1 . . . n}, where n is the total
number of methods.

(iii) SΣ = ∪n
i=1Si, where Si = {(p, q) | p, q ∈ Q and there is a transition from

p by li to q }.

In contrast to what appeared in ς-calculus, the enforcement of association
between a method and its transition set in object types of τ -calculus is impor-
tant, but sometimes in a hidden form and underestimated. In some cases, we
can model an object with only one state p (Q = {p}) and all the transitions
cause no state change (Si = {(p, p)} for i=1...n). In these cases, the states of

49

Xu and Yu

the objects can be ignored.

Four kinds of judgements are used in fragment ∆Ob in τ -calculus: (1) state
set and transition set judgment E ` Q, S for Q y S, stating that Q is a well-
formed set of states and S is a set of state transitions and S ⊆

∏
p,q∈Q(p, q)

(i.e., S ⊆ Q × Q) for q, p ∈ Q is well defined in E, (2) a type judgement
E ` B, stating that B is a well-formed type in the environment E, (3) a value
type judgement E ` (b : B) :: S, stating that b has type B which is bound
by state transition set S in E, and (4) state activation correctness judgement
E ` a@q ∈ Q and ∃(q, p) ∈ S, stating that an object a is in the state q and
there exists a state transition (q, p) for a is a well-formed environment in E.

∆Ob (τ -calculus):

• Type Object
E `Q, Bi, Si for QySi ∀i∈1..n

E ` [Q, (li:Bi)::S i∈1..n
i] where QySi means Si ⊆

∏
p,q∈Q(p, q)

• Val Object
E, a:A ` (bi:Bi)::Si ∀i∈1..n

E ` [li=τ(a:A) b i∈1..n
i]:A where A ≡ [Q, (li : Bi) :: S i∈1..n

i]

• Val Select
E ` a:[Q, (li:Bi)::S i∈1..n

i] E ` a@q∈Q ∧ ∃(q,p)∈Sj j∈1..n
E ` (a.lj) ∧ (a@q↑=a@p)

where a@q ↑ means update value of q for object a by a state transition
defined in Sj for q ∈ Q.

Rule Type Object states that the object type [Q, (li : Bi) :: S i∈1..n
i] is

well-formed in E, provided that there exist a well-formed state set Q and a
set of transitions S satisfying Q y S (S ⊆

∏
p,q∈Q(p, q)) in E. We always

assume that, when writing [Q, (li : Bi) :: S i∈1..n
i], that the labels li must be

distinct. We identify object types [Q, (li : Bi) :: S i∈1..n
i] by sorting components

(li : Bi) :: Si in certain order, e.g., lexicographical order of li.

Rule Val Object states that an object type [Q, (li : Bi) :: S i∈1..n
i] can be

formed from a collection of n methods whose self parameter (e.g. this pointer
referring to host object in C++ and Java) has type [Q, (li : Bi) :: S i∈1..n

i] and
whose bodies have type B1 ::S1, ..., Bn ::Sn. Note that this pointer is embedded
in every method body and the circularity is used by the self parameter.

Rule Val Select describes how to enforce type correctness to a method
invocation a.lj. If there is an well-formed object type [Q, (li : Bi) :: S i∈1..n

i]
and method lj indexed by j, 1 ≤ j ≤ n, can be correctly invoked only when
there exists a valid transition (q, p) ∈ Sj for the object a in current state q
(a@q). The state value of object a is updated to the state p.

Correspondingly, we can represent class types for an object type based
on our τ -calculus. Let A ≡ [Q, (li : Bi) :: S i∈1..n

i] be an object type, then
Class(A) , [new : A, li : A → (Bi :: Si)

i∈1..n] is a class that can generate
objects of type A. These classes have the form of [new = τ(z:Class(A))[q =
τ(P :Q, q0 :P)z@q0, li = τ(x :A, q :P, si :Si)z. li(x) :: si(q)

i∈1..n], li :: si =

50

Xu and Yu

λ(x:A).λ(q:P)(si(q))(bi)
i∈1..n]. An object type is an implementation indepen-

dent entity in contrast to an object class which is an implementation de-
pendent entity [16]. Therefore, P : Q stands for that a particular choice of
the state set P in class implementation is an instance of the formally de-
scribed state set Q in the triple, e.g., the state set P ={HasJob, NoJob} may
be chosen to implement the class Person whose type contains the state set
Q = {0Employed, 1Unemployed}. So there are the mappings of states from HasJob
to 0Employed and from NoJob to 1Unemployed for Person. Similarly, si : Si stands
for that the sets of state transition functions si

i=1..n associated with the state
set P are the instances of those Si

i=1..n associated with the state set Q. Note
that q0 is the starting state when an object is created. The state transition
functions, denoted by λ(q : P)(si(q))

i∈1..n, are a part of methods defined in a
class. As a result, a method invocation will first check the state correctness
and then do the rest computation. Similar to what in ς-calculus, an ad hoc
inheritance relation on class types “Class(A′) may inherit from Class(A) iff
A′ <: A” is set to follow the principle of method reuse for objects with states.

4 Inheritance and Subtyping

Although an object class is not an object type, a class is often taken as a
type-defining construct in OOPLs. An insidious problem with inheritance in
OOPLs is how to distinguish subtyping relation between object types, which
indicates the inclusion of behaviors, from other purposes such as code reuse for
classes. Objects of the same class are of the same type, but object of the same
type may not belong to the same class. Inheritance may indicate a subtyping
relation or code reuse or both. If subtyping relation is sound between A and
B (A <: B), an object oA of subclass A can emulate the behaviors of any
object oB of superclass B. Assume an arbitrary valid computation in terms of
a sequence of state changes for oB is represented by oB@q0 ↑= q1, oB@q1 ↑=
q2, . . . , oB@qm−1 ↑= qm. This property ϕ(B) of oB must be properly inherited
by oA in a form of behavioral inclusion polymorphism. As a result, there
should be no type errors for oA to simulate the computation: oA@q0 ↑= q1,
oA@q1 ↑= q2, . . . , oA@qm−1 ↑= qm. To enforce that the objects of a subtype
ought to behave the same as those of its supertype for the same sequence
of method invocations, the subtyping relation between two objects indicates
a relation between two state machines, denoted by MA � MB where MA =
(QA, ΣA, SA) and MB = (QB, ΣB, SB) satisfying QA ⊇ QB, ΣA ⊇ ΣB, and for
each method li ∈ ΣB, SAi

⊇ SBi
(i = 1 . . . |ΣB|).

We provide that ∆<:Ob1 supports the basic behavioral inclusion polymor-
phism with single inheritance for subtyping derivation in our τ -calculus:

• Sub Object 1 (τ) (li distinct):

E ` (Q⊆Q̂) E ` Bi ∧ (Q̂yŜi) E ` (QySj) ∧ (Sj⊆Ŝj) ∀i∈1..n+m ∀j∈1..n

E ` [Q̂, (li:Bi)::Ŝ i∈1..n+m
i] <: [Q, (lj :Bj)::S

j∈1..n
j]

51

Xu and Yu

Rule Sub Object 1 (τ) states a general subtyping relation between object
types. Let [Q̂, (li : Bi) :: Ŝ i∈1..n+m

i] and [Q, (lj : Bj) :: S j∈1..n
j] be object types

for ô and o respectively. If there exist Q ⊆ Q̂, and Q̂ y Ŝi for each method
li indexed by i (i = 1..n+m), and (Q y Sj) ∧ (Sj ⊆ Ŝj) for each method lj
indexed by j (j = 1..n), then the object type of ô is a subtype of type of o.

The subtyping rule is necessary to be extended when multiple inheritance
is considered. In this case, the states and state transition functions associated
with the subclass can be obtained by cross product of the states and state
transition functions associated with its superclasses (see Appendix A).

5 Program Language Constructs and State Tracking

We first provide an example of our new programming language constructs
for states and state changes in a class definition for class Dryer (see Figure
2(a)). We also use the current class structure (see Figure 2(b)) to implement
states and state transitions for the purpose of comparison. At the end of a
constructor heading in the new construct, the initial state is specified. On line
1 of Figure 2, it is an explicit declaration of state set for the class. The syntax
used in our class Dryer definition is C++ syntax except the added syntax for
states and state transitions.

Class Dryer { /* (a) Our proposed class construct */
1. state: {OffSlow, OffFast, SlowHeating, FastHeating};
2. public:
3. Dryer(int voltage)::{ −>OffSlow } : voltage(voltage) {}
4. ∼Dryer() {}
5. void turnOn() ::{OffSlow−>SlowHeating, OffFast−>FastHeating} {. . .}
6. void turnOff() ::{SlowHeating−>OffSlow, FastHeating−>OffFast} {. . .}
7. void chg2Fast() ::{OffSlow−>OffFast, SlowHeating−>FastHeating} {. . .}
8. void chg2Slow()::{OffFast−>OffSlow, FastHeating−>SlowHeating} {. . .}
9. . . . /* Other methods if necessary */
10. private:
11. int voltage; }; /* End of new class construct */

Class Dryer { /* (b) Traditional C++ class construct implementing states */
12. enum state {OffSlow, OffFast, SlowHeating, FastHeating};
13. public:
14. Dryer(int voltage) : voltage(voltage) {}
15. ∼Dryer() {}
16. void turnOn() {switch (mystate) {case OffSlow: mystate=SlowHeating;
17. break; case OffFast: mystate=FastHeating; break; default:} . . .}
18. void turnOff() {switch (mystate) {case SlowHeating: mystate=OffSlow;
19. break; case FastHeating: mystate=OffFast; break; default:} . . .}
20. void chg2Fast() {switch (mystate) {case OffSlow: mystate=OffFast;
21. break; case SlowHeating: mystate=FastHeating; break; default:} . . .}
22. void chg2Slow() {switch (mystate) {case OffFast: mystate=SlowFast;
23. break; case FastHeating: mystate=SlowHeating; break; default:} . . .}
24. private:
25. state mystate; int voltage; }; /* End of C++ class construct */

Fig. 2. (a) Our proposed class construct for Dryer and (b) the traditional C++
class construct for Dryer with states

One may argue that the above class definitions can be implemented as

52

Xu and Yu

what is shown in Figure 2(b), so programmers must implement the states
and state transitions as part inside method code. The advantage of using
our proposed class construct is obvious. First, it is in a much simpler form.
The states and state transition functions associated with each method reflect
a more intuitive mapping from statechart. Second, inheritance (subtyping)
clearly indicates the dynamic behavioral inclusion, e.g., if “class SmartDryer
: public Dryer” is declared, then the state set and the methods together with
their associated state transition functions in class Dryer are inherited to class
SmartDryer. Moreover, we can add new state transitions for the same state
set in the subclass. Third, the new constructs for states and state transition
functions are easy to implement at the compilation stage.

The syntax of states and state transition functions added into the class con-
struct can be easily related to our proposed calculi. Based on our proposed
object typing and subtyping fragments and programming language constructs,
we can detect type errors of object misbehavior. If we do not consider par-
allelism at this stage, the methods of objects are called in sequence, which
allows us to trace the state changes step by step.

6 Conclusion

We propose that object dynamic behavior, in respect to the general existence
of states and state changes in objects, should be as an essential component
in object type theory and subtyping modeling. This is an amendment to the
object typing framework that appeared in ς-calculus by Abadi and Cardelli.
The object type with states is more precise, and can ensure a higher level
correctness of type systems built for objects. As a result, type errors caused
by method calls at improper state can be detected. We believe that this
approach in building our object type system is generally applicable in OOPLs.
More work, such as a precise definition of semantics for states, flow control
optimization in guarded transitions, and a formal translation of our proposed
class-based language and τ -calculus, should be continued in the near future.

References

[1] Abadi, M. and L. Cardelli, “A Theory of Objects”, Springer, New York, 1996.
[2] Booch, G., J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language

User Guide”, Addison-Wesley, 1999.
[3] Deline, R. and M. Fahndrich, “Typestates for objects”, ECOOP 2004, 465-90.
[4] Drossopoulou, S., F. Damiani, M. Dezani-Ciancaglini, and P. Giannini, “Fickle:

dynamic object re-classification”, ECOOP 2001, 130-49.
[5] Harel, D. and E. Grey, Executable Object Modeling with Statecharts, IEEE

Computer, 30, issue 7(1997), 31-42.
[6] Hopcroft, J.E., R. Motwani, and J.D. Ullman, “Introduction to Automata

Theory, Languages, and Computation”, 2nd Edition, Addison-Wesley, 2001.
53

Xu and Yu

[7] Igarashi, A. and N. Kobayashi, “Resource Usage Analysis”, ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2002, 331-42.

[8] Liskov, B.H. and J.M. Wing, A behavioral notion of subtyping, ACM
Transactions on Programming Languages and Systems, 16, issue 6(1994), 1811-
41.

[9] Madsen, O.L., “Towards Integration of State Machines and object-oriented
Languages”, Proceedings of TOOLS Europe ’99: Technology of Object Oriented
Languages and Systems. 29th International Conference, 1999, 261-74.

[10] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, “Object-
Rriented Modeling and Design”, Prentice Hall 1991.

[11] Ravara, A. and V.T. Vasconcelos, “Typing non-uniform concurrent objects”,
Proceedings of CONCUR 2000. 11th International Conference on Concurrency
Theory, 2000, 474-88.

[12] Sakharov, A., “State Machine Specification Directly in Java and C++”,
addendum to the 2000 proceedings of the conference on Object-oriented
programming, systems, languages, and applications, OOPSLA, 2000, 103-104.

[13] Samek, M. and P. Montgomery, State-Oriented Programming, Embedded
Systems Engineering, 13, issue 8(2000), 22-43.

[14] Strom, R.E. and S. Yemini, Typestate: A Programming Language Concept for
Enhancing Software Reliability, IEEE Transactions on Software Engineering,
SE-12, issue 1(1986), 157-171.

[15] Tan, G., X. Ou, and D. Walker, “Resource Usage Analysis Via
Scoped Methods”, Foundations of Object-Oriented Languages (2003), URL:
http://www.cs.princeton.edu/∼dpw/papers/smethods.pdf.

[16] Yu, S., Class-is-type is inadequate for object reuse, ACM Sigplan Notice, 36,
No. 6(2001), 50-59.

Appendix A: ∆<:Ob2 (τ-calculus)

Let A ≡ [Q, (lk : Bk) :: S k∈1..`
k] and ` = |Σ1 ∪ Σ2|:

Sub Object 2 (τ) (li distinct, QÿSk means
∏

p,p′∈Q1,q,q′∈Q2
((p, q), (p′, q′))):

E`(Q1∧Q2)∧(B1
i∧(Q1yS1

i))∧(B2
j∧(Q2yS2

j)) E`(Q=Q1×Q2)∧Qÿ(Sk)∧(S=S1
N

S2) ∀i∈1..n,j∈1..m

E ` (A<:[Q1,(li:B1
i)::S

1
i

i∈1..n])∧(A<:[Q2, (lj :B2
j)::S

2
j

j∈1..m]) where (max(n,m)<`≤n+m)

Rule Sub Object 2 (τ) describes the object subtyping rule for multiple
inheritance in addition to the ∆<:Ob1 of τ -calculus. Let AS1 ≡ [Q1, (li : B1

i) ::

S1 i∈1..n
i] and AS2 ≡ [Q2, (lj : B2

j) :: S2 j∈1..m
j] be the two supertypes

(or superclasses). If there exist the conjunctive conditions of (Q = Q1 ×
Q2) ∧ (Q1 y S1

i) ∧ (Q2 y S2
j) ∧ (QÿSk) ∧ (S = S1

⊗
S2) (where

i = 1..n and j = 1..m and (max(n, m) < ` ≤ n+m)), then the object type of
A ≡ [Q, (lk : Bk) :: S k∈1..`

k] is a subtype of both the type AS1 and type AS2 .
S = S1

⊗
S2 describes construction of the state transition functions Sk

k=1..`

for the triple (Q, Σ, S) associated with the subtype from the sets S1 and S2.

54

http://www.cs.princeton.edu/~dpw/papers/smethods.pdf
http://www.cs.princeton.edu/~dpw/papers/smethods.pdf

DCM 2005 Preliminary Version

SCHOOL: a Small Chorded
Object-Oriented Language

S. Drossopoulou, A. Petrounias, A. Buckley, S. Eisenbach

{ s.drossopoulou, a.petrounias, a.buckley, s.eisenbach } @ imperial.ac.uk

Department of Computing, Imperial College London, United Kingdom

Abstract

Chords are a declarative synchronisation construct based on the Join-Calculus,
available in the programming language Cω. To our knowledge, chords have no
formal model in an object-oriented setting.

In this paper we suggest SCHOOL, a formal model for an imperative, object-
oriented language with chords. We give an operational semantics and type system,
and can prove soundness of the type system.

1 Introduction

A chorded program [1] consists of class definitions, each class defining one or
more chords. A chord has a signature and a body. A chord’s signature is an
aggregate that comprises at most one synchronous method and zero or more
asynchronous methods.

A chord body is executed when an object has received at least one mes-
sage for each of the chord’s synchronous and asynchronous method sig-
natures. Potentially multiple method calls are needed to invoke a chord’s
body. This reflects the notion of join from the Join-Calculus [2], where the
join-pattern consists of the methods comprising the chord signature.

For instance, the following chord, an unbounded buffer:

int get() & async put(int x) { return x }

will execute the body and return x only when there is a simultaneous presence
of invocations to both of the methods in its signature.

The method get is synchronous, and hence will block its caller until
there is a message present for method put and hence it can join. The latter
method is asynchronous, a subtype of void, and returns immediately to its
caller; thus messages sent to it must be queued by the receiving object until
consumed by the joining of the chord.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Drossopoulou, Petrounias, Buckley, Eisenbach

Those chords whose signatures contain a synchronous method are called
synchronous chords. Chords with only asynchronous methods in their signa-
ture are called asynchronous chords.

2 SCHOOL

We present SCHOOL (see overview in figure 1) in the form of structural op-
erational semantics (found in figure 2) and an accompanying type system (in
figure 3). An extended version of this paper with additional material, a more
thorough coverage of chords in general, and hand-written proofs of sound-
ness can be found from the following website: slurp.doc.ac.uk/school.

Expressions and Programs
The syntax of SCHOOL expressions is: method call, sequence of expres-

sions, the receiver (this), a parameter (x), and the values null (for the null
pointer) and voidVal (for the result of an execution that returns void or for
the result of a call to an asynchronous method).

We also define SCHOOL programs, which are tuples of mappings. We
do not give a syntax for programs, and therefore can omit rather mechanical
definitions of derived functions which lookup methods and superclasses.

A program consists of 1) a mapping from a class and method name to
the method’s signature in that class, 2) a mapping from a class and method
name to all chords in which the method name is the synchronous part, 3) a
mapping from a class name to the set of the class’s asynchronous chords, and
4) a mapping from a class name to the name of its superclass.

A method signature contains a return type, a method name and a pa-
rameter type. The name of the formal parameter is derived from the name
of the method: for a method called mth, the parameter will be called mth x.
These restrictions are, of course, inconvenient for programming but are not
essential to our study of chords and types, and they allow a considerably
more succinct presentation.

We represent a chord as a set of asynchronous method names along with
the expression representing the chord’s body. Thus, the distinction between
a synchronous chord and an asynchronous chord is whether the chord appears
in the image of the second or the third component of a SCHOOL program.
A method name can appear in any number of chords.

For ease of notation we also define the following four lookup functions:
the functionM (P, c, m) is the projection of the first component of P, and
returns m’s signature in class c; the function SChs (P, c, m) is the projection
of the second component of P, and finds the synchronous chords to which
m belongs, returning their asynchronous method names plus their bodies;
the functionAChs (P, c) is the projection of the third component of P, and
returns the set of asynchronous chords for class c; finally,Ma (P, c) gives all
asynchronous method names present in class c’s chord definitions.

56

Drossopoulou, Petrounias, Buckley, Eisenbach

Objects, Messages and the Heap
One can view chord invocation as message-passing between objects. A

caller object sends a message comprising of a name and an argument to
a receiver object. A call to an asynchronous method returns immediately,
but the corresponding chord body may not yet be ready to run. Therefore,
asynchronous method calls are queued within the receiver object.

Consequently an object comprises 1) the name of its defining class and
2) one queue for each asynchronous method signature in its class. Thus, the
state of an object is represented by its queues.

Queues are modelled as mappings from method identifiers to multisets
of values representing the actual parameter passed when the asynchronous
method was called. The use of multisets allows a natural presentation of the
non-deterministic nature of handling asynchronous methods call, whereby
asynchronous calls are not guaranteed to be handled in the order they were
made, even if they were made consecutively from the same thread [1]. We
need to have multisets rather than sets in order to model the situation where
an asynchronous method was called twice with the same parameter.

An interesting observation is that any object that can access another
object can write to its queues by calling asynchronous methods. However,
only the chord body associated with an asynchronous method signature can
read from the method’s queue. Reading from a queue consumes one of its
elements.

The heap maps addresses (in N) to objects. Once an object is allocated at
an address, there is no way to remove it. Thus, in terms of address-to-value
mappings, the heap grows monotonically. However, the queues within each
object grow and shrink as messages are sent to and consumed from queues,
as described earlier.

Operational Semantics
SCHOOL operational semantics are found in figure 2. The aim of the

rules is to abstract as much away from scheduling as possible. Hence, we
welcome non-determinism whenever there is choice, thus maximising the
possible behaviours of programs. There are three rules of particular interest:
A, J, and S. These three rules capture the essence of chord
invocation in SCHOOL.

A describes invocation of an asynchronous method: the value repre-
senting void is immediately returned, and the actual argument is placed in
the appropriate queue of the receiving object.

J describes invocation of a synchronous method. The caller will block
until all the asynchronous methods present in the chord containing the in-
voked method have at least one message each in their respective queues at
the receiving object. Notice that the choice of chord is non-deterministic, as
is the choice of participating queue elements. Once the chord joins, the mes-

57

Drossopoulou, Petrounias, Buckley, Eisenbach

sages are consumed from the queues and the current expression becomes
the body of the chord.

S describes execution of asynchronous chords. Essentially, this rule
exhibits non-deterministic choice at three levels: the selection of object in
the heap, the selection of asynchronous chord, and the selection of elements
from the participating queues. The body of the chord will execute in a new
thread (we call this spawning).

Type Judgements
The judgement P, Γ ` e : t describes the static type of a source level ex-

pression e, while the judgement P, h ` e : t describes the dynamic type of a
runtime expression e. The complete SCHOOL type system can be found in
figure 3.

Well-Formed Programs
A well-formed SCHOOL source program (WF-P) is comprised of

well-formed class declarations (WF-C). A class declaration is well-
formed if its superclass is a class, i.e., Object or a class defined in the
program, any method overridden from the superclass has the same signa-
ture up to async or void, all synchronous chords are well-formed, and all
asynchronous chords are well-formed.

A synchronous chord is well-formed when the return type of the chord’s
synchronous method signature coincides with the type of the chord body.
The chord body is typed in a context where formal parameters take the
types mentioned in synchronous and asynchronous method signatures, and
this takes the type of the current class. Any other method signatures in the
chord’s signature must have a return type of async.

An asynchronous chord is well-formed when the chord body has type
void, when typed in a context where the formal parameters take the types
mentioned in the asynchronous method signatures.

With regard to method overriding, our system allows a method that
returns void to be overridden in a subclass by a method that returns async.
It also allows a method that returns async to be overridden in a subclass
by a method that returns void. Cω only allows a method that returns void
to be overridden by a method that returns async. While overriding such
as we allow may not be good programming practice, it does not affect the
soundness of the type system, and so is allowed.

Furthermore, Cω imposes restrictions on the overriding of methods
when involved in chords, in order to avoid the inheritance anomaly [3].
The inheritance anomaly, however, is concerned with preservation of syn-
chronisation properties and is unrelated to type soundness. Therefore, our
system does not impose similar restrictions.

Finally, we do not require the class hierarchy to be acyclic. Although this
property is useful for a compiler, it is not essential for type soundness.

58

Drossopoulou, Petrounias, Buckley, Eisenbach

Well-Formed Heaps
A well-formed heap (WF-H) requires that every value in an object’s

queues must have a type according to the parameter type in the correspond-
ing asynchronous method signature.

Soundness
The evaluation rules for SCHOOL preserve types throughout execution.

We prove this property through a subject-reduction theorem [4]. The proof
technique is standard.

We first define appropriate substitutions, σ, which map identifiers onto
addresses in a type preserving way.

Definition 2.1 [Appropriate Substitution]
For a substitution σ = Id ∪ { this } → Addr, a heap h, and an environment Γ, we have:

Γ, h ` σ

iff:

dom (Γ) = dom (σ)

Γ (id) = c =⇒ , h ` σ (id) : c

We can easily prove that an appropriate substitution, σ, when applied to
an expression e turns it into a runtime expression, of the same type as the
original expression.

Lemma 2.2 (Substitution)
P, Γ ` e : t

P, h ` σ

 =⇒ P, h ` [e]σ : t

Proof. By induction on expression e. �

Furthermore, if a runtime expression has a certain type in a heap h, then
it preserves its type in any heap h′ where the objects have the same classes
as the corresponding objects in h.

Lemma 2.3 (Preservation)
If

∀ι ∈ dom (h) : h (ι) = [[c ||]] =⇒ h′ (ι) = [[c ||]]

then:
P, h ` e : t =⇒ P, h′ ` e : t

Proof. By structural induction on expression e. �

We can prove subject reduction for the sequential case:

59

Drossopoulou, Petrounias, Buckley, Eisenbach

Lemma 2.4 (Subject Reduction - Sequential)
P ` h

` P

P, h ` e : t

e, h e′, h′


=⇒

P ` h′

P, h′ ` e′ : t

Proof. By structural induction on the derivation . �

Finally, we can prove subject reduction for the multithreaded case:

Theorem 2.5 (Subject Reduction - Threads)
For SCHOOL heaps h and h′, program P, expressions e1, ... en, e′1, ... e′m, types t1, ... tn, if

• ` P and P ` h,
• e1, . . . , en, h e′1, . . . , e′m, h′

• P, h ` ei : ti ∀i ∈ 1..n

then, there exist types t′1, . . . , t′m so that:

• P ` h′

• P, h′ ` e′i : t′i ∀i ∈ 1..m
• { t1, . . . , tn } ∪ { void } = { t′1, . . . , t′m } ∪ { void }

Proof. By case analysis on and application of lemma 2.4. �

3 Conclusions and Future Work

We designed SCHOOL with the aim of studying the features essential to
an understanding of chords in an imperative, object-oriented setting. We
made various design decisions to keep our language simple and the de-
scription minimal. Consequently, only classes and chords were necessary;
the operational semantics requires only half a page, and ten rules!

One design decision involves fields: in the extended paper available on-
line, we describe the language SCHOOL+F, an extension of SCHOOL with
fields. We show how fields can be emulated using only chords, and hence
how programs in SCHOOL+F can be translated into programs in SCHOOL.
We describe the translation function and show that translated programs
in SCHOOL have equivalent behaviours with their original programs in
SCHOOL+F. Hence SCHOOL is as expressive as SCHOOL+F and fields are
not a necessary feature of the original language.

We have also incorporated subclasses in SCHOOL, and were thus able
to formally confirm that although inheritance and synchronisation do not
generally mix well [3], the issues are unrelated to type soundness. Thus,
in SCHOOL, we allow a method returning void to be overridden by a
method returning async, and vice-versa. We also allow a method defined
in one chord to be part of another chord in a subclass. The restrictions
on overriding and method declaration in Cω are thus unrelated to typing

60

Drossopoulou, Petrounias, Buckley, Eisenbach

issues; rather, they attempt to preserve how a method is synchronised in
subclasses.

In further work, we would like to extend SCHOOL to study interesting
interactions with other language features. Although features like generics,
packages, inner classes, overloading, and various control structures are
probably orthogonal to chords, we expect that the introduction of delegates
and exceptions may throw some interesting questions.

More interesting will be the study of the combination of SCHOOL and ex-
plicit synchronisation mechanisms as in Java and C], like locks and monitors.
Furthermore, we would like to design extensions of chords to incorporate
more advanced features, such as preemptions, priorities and transactions.
We will use SCHOOL to express our designs.

It would also be interesting to consider issues around the scheduling for
chords. The semantics of SCHOOL is non-deterministic, and thus abstract
away one important property of chords as in Polyphonic C]; namely that
any chord which can run (i.e., whose queues are not empty), will eventually
run. One could try to characterise such fair execution strategies through a
further refinement of the operational semantics. More interesting would be
a formal understanding of particular scheduling mechanisms, and proof of
their properties.

Finally, another challenging direction is the use of chords in program
understanding and verification. In [1], asynchronous methods correspond
to states, and some synchronous method calls correspond to state change.
Although this analogy cannot be expected to always hold, it would be
interesting and useful to study how state transition diagrams can be mapped
into chorded programs, and vice-versa. Such an approach would then allow
the application of model-checkers.

References

[1] Benton, N., Cardelli, L., and Fournet, C. Modern concurrency abstractions
for C]. ACM Trans. Program. Lang. Syst. 26, 5 (2004), 769–804.

[2] Fournet, C., and Gonthier, G. The reflexive CHAM and the join-calculus. In
Proceedings of the 23rd ACM Symposium on Principles of Programming Languages
(1996), ACM Press, pp. 372–385.

[3] Matsuoka, S., and Yonezawa, A. Analysis of inheritance anomaly in object-
oriented concurrent programming languages. In Research directions in concurrent
object-oriented programming (1993), MIT Press, pp. 107–150.

[4] Wright, A. K., and Felleisen, M. A syntactic approach to type soundness.
Inf. Comput. 115, 1 (1994), 38–94.

61

Drossopoulou, Petrounias, Buckley, Eisenbach

Abstract Syntax Lookup Functions

es
∈ ExprS F null | voidVal | this | x

| new c | es.m (es) | es ; es

MethSig F t m (c)

t ∈ Type F void | async | c

x, c, m ∈ Id

M (P, c, m) = P�1 (c, m)

SChs (P, c, m) = P�2 (c, m)

AChs (P, c) = P�3 (c)

M
a : Program × Idc

→ P (Idm)

M
a = { m | M (P, c, m) = async m () }

Program Representation Runtime Entities

Program = Idc
× Idm

→ MethSig

×

Idc
× Idm

→ P (Chord)

×

Idc
→ P (Chord)

×

Idc
→ Idc

Chord = P (Idm) × Expr

Heap = N → Object

Object = Idc
× Queues

Queues = Idm
→ multiset(Val)

e ∈ Expr F voidVal | nullPtrEx | v

| new c | e.m (e) | e ; e

v ∈ Val F null | ι

ι ∈ N

Well-Formedness

P ` c �cl =⇒ P ` c
WF-P

` P

P ` P↓4 (c) �cl

M (P, P↓4 (c), m) = t m (t′) =⇒ M (P, c, m) = t′′ m (t′)

where t′′ = t or t, t′′ ∈ { void, async }

SChs (P, c, m) 3 ({ m1, . . . , mn }, e) =⇒

∀i ∈ 1..n : ∃ ti :M (P, c, mi) = async mi (ti)

∃ t, t′ :M (P, c, m) = t m (t′)

P, (m1 x 7→ t1, . . . , mn x 7→ tn, m x 7→ t′, this 7→ c) ` e : t

AChs (P, c) 3 ({ m1, . . . , mn }, e) =⇒

∀i ∈ 1..n : ∃ ti :M (P, c, mi) = async mi (ti)

P, (m1 x 7→ t1, . . . , mn x 7→ tn, this 7→ c) ` e : void
WF-C

P ` c

h (ι) = [[c || qs]], M (P, c, m) = async m (t), v ∈ qs (m) =⇒ P, h ` v : t
WF-H

P ` h

Fig. 1. SCHOOL Overview

62

Drossopoulou, Petrounias, Buckley, Eisenbach

Contexts

E[�] F E[�].m (e) | ι.m (E[�]) | E[�] ; e

Evaluation Rules

e, h e′, h′
C

E[e], h E[e′], h′

r ∈ N ∪ { null, voidVal }
S

r ; e, h e, h

{ e1, . . . , en } = { e′1, . . . , e′n }
P

e1, . . . , en, h e′1, . . . , e′n, h

en, h e′n, h′
R

e1, . . . , en, h e1, . . . , en−1, e′n, h′

E
null.m (v), h nullPtrEx, h

E-P
E[nullPtrEx], h nullPtrEx, h

h (ι) = Udf

M
a (P, C) = { m1, . . . , mn }

N
new C, h ι, h[ι 7→ [[C || m1 7→ ∅, . . . , mn 7→ ∅]]]

h (ι) = [[c || qs]]

M (P, c, m) = async m ()
A

ι.m (v), h voidVal, h[ι 7→ [[c || qs[m 7→ { v } ∪ qs (m)]]]]

h (ι) = [[c || qs]]

SChs (P, c, m) 3 ({ m1, . . . , mn }, e)

∀i ∈ 1..n : qs (mi) = { vi } ∪ qi
J

ι.m (v), h e[v1/m1 x, . . . , vn/mn x, v/m x, ι/this],

h[ι 7→ [[c || qs[m1 7→ q1, . . . , mn 7→ qn]]]]

h (ι) = [[c || qs]]

AChs (P, c) 3 ({ m1, . . . , mn }, e)

∀i ∈ 1..n : qs (mi) = { vi } ∪ qi
S

e1, . . . , ek, h e1, . . . , ek, e[v1/m1 x, . . . , vk/mk x, ι/this],

h[ι 7→ [[c || qs[m1 7→ q1, . . . , mn 7→ qn]]]]

Fig. 2. SCHOOL Operational Semantics

63

Drossopoulou, Petrounias, Buckley, Eisenbach

Class and Type Declarations

P↓4 (c) , Ud f
D-C-1

P ` c �cl

D-C-2
P ` Object �cl

t ∈ { void, async }
D-T-1

P ` t �tp

P ` c �cl
D-T-2

P ` c �tp

Source-Level Type Judgements

P ` c �cl
ST-N

P, Γ ` null : c

ST-V
P, Γ ` voidVal : void

z ∈ { this } ∪ x
ST-TX

P, Γ ` z : Γ (z)

P ` c �cl
ST-N

P, Γ ` new c : c

P, Γ ` e1 : c

P, Γ ` e2 : t

M (P, c, m) = tr m (t)
ST-I

P, Γ ` e1.m (e2) : tr

P, Γ ` e1 : t1

P, Γ ` e2 : t2
ST-S

P, Γ ` e1 ; e2 : t2

Run-Time Type Judgements

P ` c �cl
RT-N

P, h ` null : c

RT-V
P, h ` voidVal : void

h (ι) = [[c ||]]
RT-A

P, h ` ι : c

P ` c �cl
RT-N

P, h ` new c : c

P, h ` e1 : c

P, h ` e2 : t

M (P, c, m) = tr m (t)
RT-I

P, h ` e1.m (e2) : tr

P, h ` e1 : t1

P, h ` e2 : t2
RT-S

P, h ` e1 ; e2 : t2

P, h ` e : c

P↓4 (c) = c′
RT-S-C

P, h ` e : c′

P, h ` e : void
RT-S-A

P, h ` e : async

P ` t �tp
RT-E

P, h ` nullPtrEx : t

Fig. 3. SCHOOL Type System

64

DCM 2005 Preliminary Version

Coalgebraic Description of Generalized Binary
Methods 1

Furio Honsell 2

DIMI, Università di Udine, ITALY

Marina Lenisa 3

DIMI, Università di Udine, ITALY

Rekha Redamalla 4

DIMI, Università di Udine, ITALY, and
B.M. Birla Science Centre, Hyderabad, INDIA.

Abstract

We extend Reichel-Jacobs coalgebraic account of specification and refinement of
objects and classes in Object Oriented Programming to (generalized) binary meth-
ods. These are methods which take more than one parameter of a class type. Class
types include sums and (possibly infinite) products type constructors. We study
and compare two solutions for modeling generalized binary methods, which use
purely covariant functors. In the first solution, which applies when we have already
a class implementation, we reduce the behaviour of a generalized binary method to
that of a bunch of unary methods. These are obtained by freezing the types of the
extra class parameters to constant types. The bisimulation behavioural equivalence
induced on objects by this model amounts to the greatest congruence w.r.t method
application. Alternatively, we treat binary methods as graphs instead of functions,
thus turning contravariant occurrences in the functor into covariant ones.

Key words: OO-programming, Binary methods, Coalgebraic
semantics.

Introduction
In [10,7,8], a categorical semantics for objects and classes based on coalgebras
is given. The idea underpinning this approach is that coalgebras, duals of
algebras, allow to focus on the behaviour of objects while abstracting from
the concrete representation of the state of the objects.

1 Work partially supported by the UE Project IST-510996 TYPES.
2 Email: honsell@dimi.uniud.it
3 Email: lenisa@dimi.uniud.it
4 Email: redamall@dimi.uniud.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Honsell, Lenisa, Redamalla

In the coalgebraic approach of [10,7,8], a class is modelled as an F -coalgebra
(A, f : A → F (A)) for a suitable functor F . The carrier A represents the space
of attributes, or fields, and the coalgebra operation f represents the public
methods of the class, i.e. the methods which are accessible from outside the
class. Thus the objects of a class are modelled as the elements of the carrier.
Their behaviour under application of public methods, viewed as functions act-
ing on objects, is then captured by the coalgebra map f . Thus the coalgebraic
model induces exactly the behavioural equivalence on objects, whereby two
objects are equated if, for each public method, the application of the method
to the two objects, for any list of parameters, produces equivalent results. A
benefit of the coalgebraic model is a coinduction principle for establishing the
behavioural equivalence.

Following [7], we distinguish between class specifications and class imple-
mentations (or simply classes). A class specification is like an abstract class,
in which only the signatures of constructors and (public) methods are given,
without their actual code. Assertions enforce behavioural constraints on con-
structors and methods. Implementation of constructors and methods is given
in a class implementation. In the bialgebraic approach, a class specification
induces a pair of functors, determined by the signature of constructors and
methods, respectively. A class implementation is any bialgebra satisfying the
assertions. Here we will focus only on the coalgebraic part, which is the prob-
lematic one. For a complete bialgebraic treatment, see [6].

Binary methods, i.e. methods with more than one class argument, appar-
ently escape the coalgebraic approach. The extra class parameters produce
contravariant occurrences in the functor modelling methods, and hence cannot
be dealt with a straightforward application of the coalgebraic methodology.

We extend Reichel-Jacobs coalgebraic description to generalized binary
methods, i.e. methods whose type parameters include sums and possibly
infinite products type constructors. Our focus of interest are equivalences on
objects which are “well-behaved”, in the sense that they induce a canonical
non-redundant model on the quotient of the given class. Therefore, such
equivalences must be congruences w.r.t. method application. In this paper we
show that canonical models can be built also for generalized binary methods
using purely covariant tools. We propose two solutions. Our first solution
applies to the case where we have already a class implementation. It is based
on the observation that the behaviour of a generalized binary method can
be captured by a bunch of unary methods obtained by “freezing”, in turn,
the types of the class parameters to the states of the class implementation
given at the outset, i.e. by viewing them as constant types. Our second
solution is based on a set-theoretic understanding of functions, whereby binary
methods in a class specification are viewed as graphs instead of functions. Thus
contravariant function spaces in the functor are rendered as covariant sets of
relations.

We prove that the behavioural equivalence induced by the “freezing ap-

66

Honsell, Lenisa, Redamalla

proach” amounts to the greatest congruence w.r.t method application on the
given class. As a by-product, we gain a (coalgebraic) coinduction principle for
reasoning about such greatest congruence.

As far as the graph model, the behavioural equivalence is not a congruence,
in general. Remarkably, we show that a necessary and sufficient condition for
this to hold is that the graph and freezing equivalence coincide. As a conse-
quence, when this is the case, we obtain a spectrum of coinduction principles
for reasoning on the greatest congruence.

The interest of the graph approach goes beyond coalgebraic semantics,
since it suggests a new way for solving the well-known problem of typing
binary methods when subclasses are viewed as subtypes, see e.g [3].

In this paper, we work on a set-theoretic category, denoted by C. For basic
definitions and results on coalgebras we refer to [9].

In the literature, various authors have been considered the problem of the
coalgebraic description of binary methods, see e.g. [12]. For an extensive
comparison with the literature, see [6].

1 Generalized Binary Methods and Behavioural Equiv-
alences

We call a method m : X × T1 × . . .× Tq → T0 generalized binary if Ti ranges
over the following grammar of types:

(T 3) T ::= X | K | T × T | T + T | ΠKT,

where X ∈ TVar , is a variable for class types, and K is any constant type.
Notice that the product type ΠKT corresponds to the function space K → T .
That is, in a generalized binary method, we allow functional parameters, where
variable types can appear only in strictly positive positions. For simplicity,
in this paper we will consider only one class. There would be no additional
conceptual difficulty in dealing with the general case.

A preliminary step in discussing equivalences induced on objects by gen-
eralized binary methods consists in extending the behavioural equivalence on
objects of a class X to the whole structure of types in T over X. This is
achieved through the relational lifting of [5]. In the definition below, by abuse
of notation, we denote by X and T also their set-theoretic semantic counter-
parts.

Definition 1.1 [Relational Lifting] Let RX be a relation on X, let T ∈ T be
such that V ar(T) ⊆ {X}. We define the extension RT ⊆ T × T by induction
on T as follows:
• if T = K, then RT = IdK×K ,

• if T = T1 × T2, then RT = {((a1, a2), (a
′
1, a

′
2)) | a1R

T1a′1 ∧ a2R
T2a′2},

• if T = T1+T2, then RT = {((1, a), (1, a′)) | aRT1a′} ∪ {((2, a), (2, a′)) | aRT2a′},
• if T = ΠKT1, then RT = {(f, f ′) ∈ ΠKT1 | ∀a ∈ K =⇒ faRT1f

′
a}.

67

Honsell, Lenisa, Redamalla

class spec : Register class R
methods : attributes :

set : X ×N → X val : int
get : X → N methods :
eq : X ×X → B r.get = 〈r.val, r〉

assertions : r.set(n) = 〈r′, r′〉
r.set(n).get = n where r′.val = n
r1.get = r2.get ⇔ r1.eq(r2) = if (r1.get = r2.get)

r1.eq(r2) = true then 〈true, r1〉
end class spec else 〈false, r1〉

end class

Table 1
Example of Class Specification and Class.

Definition 1.2 [Congruence] Let ≈X be an equivalence on objects of a class
X and let m : X × T1 × . . . × Tq → T0 be a method in X, then ≈X is a
congruence w.r.t. m if x ≈X x′ and a1 ≈T1 a′1 . . . aq ≈Tq a′q ⇒ x.m(a) ≈T0

x′.m(a′), where ≈Ti denotes the extension of ≈X to the type Ti, according to
the definition above. (Notice the use of the “dot-notation” for method calls.)

2 Class Specifications and Class Implementations

Definition 2.1 A class specification S is a structure consisting of
• A finite set of method declarations

m : X × T1 × . . .× Tq → T0 ,

• A finite set of assertions, regulating the behaviour of the objects belonging
to the class.

The language for assertions is any first order language with constant sym-
bols and function symbols for denoting constructors, methods and (extensions
of) behavioural equivalences at all types. Typical assertions are equations, see
e.g. [11] for more details.

In the lefthand part of Table 1, we present an example of a class specifica-
tion, Register, which features the binary method eq for comparing the content
of two registers.

A class (implementation) consists of attributes (fields), constructors and
methods. Attributes and methods of a class can be either private or public.
For simplicity, we assume all attributes to be private, and all methods to be
public. We do not use a specific programming language to define classes,
since we are working at a semantic level. Any programming language would
do. In this perspective, the code corresponding to a method declaration m :
X ×

∏q
j=1 Tj → T0 is given by a set-theoretic function α : X ×

∏q
j Tj →

T0 + Excp + 1, since a method can possibly terminate with an exception or
not terminate.

68

Honsell, Lenisa, Redamalla

Definition 2.2 A class C implements a specification S if method declarations
correspond, and their implementations satisfy the assertions in S.

In the righthand part of Table 1, we present the class R implementing the
class specification, Register.

3 Coalgebraic Description of Objects and Classes: unary
case

In this section, we illustrate the coalgebraic description of class specifications
and class implementations in the case of unary methods. Following [10,7], we
associate a functor to a class specification as follows:

Definition 3.1 Let S be a class specification with method declarations mi :
X ×

∏qi

j=1 Tij → Ti0, i = 1, . . . , k, where all methods are unary (i.e. X 6∈
Tij ∀j = 1, . . . , qi). Then using currification the method declarations in S
induce the functor H : C → C defined by

H ,
k∏

i=1

qi∏
j=1

Tij → (Ti0 + Excp + 1),

where Excp denotes a set of exceptions/errors.

Notice that the functor H is covariant only if the method m is unary.
Generalized binary methods, such as the method eq in the class specifica-
tion Register, produce contravariant occurrences of X in the corresponding
functor. In Section 4, we discuss how to overcome this problem.

The class implementations can be viewed as coalgebras as follows:

Definition 3.2 Let S be a class specification inducing a functor H. A class
implementing S is an H-coalgebra satisfying the assertions in S.

On the other hand, given a concrete class, this induces a coalgebra for the
functor determined by its method declarations, as follows:

Definition 3.3 i) A class C = 〈{fi : Ti}n
i=1, {mi : X ×

∏qi

j=1 Tij → Ti0}k
i=1〉

induces a coalgebra (X, α) for the functor H determined by the declarations
of methods mi, defined as follows:
• The carrier X is the set of states determined by the fields fi.

• The coalgebra map α : X → HX is defined by α , 〈αi〉ki=1, where αi : X →
HiX is the function implementing the method mi.

ii) An object of a class C is an element of the set of states X of C.

In the following lemma we characterize the behavioural equivalence on ob-
jects induced by the coalgebraic description of a class implementation. Such
behavioural equivalence equates objects with the same behaviour under ap-
plication of methods:

69

Honsell, Lenisa, Redamalla

Lemma 3.4 Let S be a class specification with method declarations mi :
X ×

∏qi

j=1 Tij → Ti0 , i = 1, . . . , k, inducing the functor H =
∏k

i=1 Hi, let

(X, 〈αi〉ki=1) be an H-coalgebra implementing S. Then the greatest H-bisimulation
on (X, 〈αi〉i), ≈H , can be characterized as follows:

x ≈H x′ ⇐⇒ ∀i. ∀a. αi(x)(a) ≈H αi(x
′)(a) ,

where, by abuse of notation, αi(x)(a) ≈H αi(x
′)(a) denotes the extension of

≈H to the type Ti0, i.e. ≈Ti0
H , according to Definition 1.1 of relational lifting.

4 Coalgebraic Description of Generalized Binary Meth-
ods

In this section, we show how to extend the coalgebraic model to generalized
binary methods. Our first proposal (Section 4.1) applies when a concrete
coalgebra (i.e. class implementation) is given. It is based on the observation
that the behaviour of a generalized binary method can be simulated by a bunch
of unary methods, each one determined by “freezing” all the occurrences of X
in the parameter types and object type, but one. “Freezing” an occurrence of
X means that X is replaced by the carrier, i.e. the set of states, of the given
class. The behavioural equivalence thus obtained turns out to be the greatest
congruence w.r.t. the original generalized binary method.

In Section 4.2, we present an alternative solution to the freezing functor.
Here we turn contravariant occurrences in the type of parameters of a gen-
eralized binary method m into covariant ones simply by interpreting m as a
graph instead of a function. To this aim, we introduce a new functor G (graph
functor), where the function space is substituted by the corresponding space
of graph relations.

The advantage of this latter solution w.r.t. the previous one is that this
approach directly applies to specifications. Moreover, we do not have to use
the intermediate step of the unary methods. The drawback is that the graph
behavioural equivalence is not a congruence w.r.t. method application in
general. However, there are many interesting situations where it is. In these
cases a rich spectrum of conceptually independent coinduction principles is
available. We discuss this issue in Section 4.3.

4.1 The Freezing Functor

We proceed in two passes.
First, we reduce a generalized binary method to a bunch of purely binary
methods with the same observable behaviour. Let m be a generalized binary
method. In particular, for each parameter of type T1 + T2, we can duplicate
the method. In the first version, we will have a parameter of type T1. In the
second version the parameter will be of type T2. Moreover, each parameter of
type ΠKT can be viewed as the product of |K| parameters of type T . Thus,

70

Honsell, Lenisa, Redamalla

by applying the above transformations to a generalized binary method, we
get a (possibly infinite) set of purely binary methods m : X ×

∏
j∈J Tj → T0,

where J is a possibly infinite set of indexes.

In the second pass, we reduce each purely binary method to a bunch of
unary methods. Let C be a class implementation with set of states X̄, in-
cluding a purely binary method m : X ×

∏
j∈J Tj → T0, implemented by

the function α. In order to recover the observable behaviour of the original
method m, we need to consider a bunch of unary methods ml, one for each
class parameter, where ml describes the behaviour of an object when it is
used as lth class parameter. Let I be the set of indexes corresponding to class
parameters, including the object, for all l ∈ I, we define :

ml : X × (
∏
j∈J

Tj[X̄/X]) → T0, αl : X × (
∏
j∈J

Tj[X̄/X] → T0)

αl(x)(a1, . . . , aq) , α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

Now we can define a coalgebraic model of the class implementation using
purely covariant tools, as in Section 3, using the freezing functor F defined
by:

Definition 4.1 [Freezing Functor] Let C be a class implementation with
purely binary methods and set of states X̄. The freezing functor determined
by C is defined by

F ,
k∏

i=1

Fi ,

where, for each unary method mi, Fi , Hi, and for each binary method mi :
X ×

∏
j∈Ji

Tij → Ti0 with class parameters in Ii, Fi ,
∏

l∈Ii
Fil, where FilX ,

(
∏

j∈J Tij)[X̄/X] → (Ti0 + Excp + 1), for all li ∈ Ii.

The following definition of 1-ary method context will be useful to charac-
terize the behavioural equivalence induced by the freezing model:

Definition 4.2 [1-ary Method Context] Let C be a class. A 1-ary method
context, D[], is a context with exactly one hole, whose top operator is a
method in C, where the hole either corresponds to the object or to a parameter

The behavioural equivalence on objects induced by the freezing functor
can then be characterized as follows:

Lemma 4.3 (Freezing Bisimulation and Coinduction Principle) Let C
be a class implementation with set of states X̄, and let F be the freezing func-
tor induced by C. Then the greatest F -bisimulation ≈F , on the coalgebra
determined by the methods in C, can be characterized as follows:

x ≈F x′ ⇐⇒ ∀D[] 1-ary context. D[x] ≈F D[x′]

We can now establish the result which motivates our treatment:

Theorem 4.4 Let C be a class. Then for all methods mi : X×
∏

j∈J Tij → Ti0

in C,∀xa, x′a′ ∈ X ×
∏

j∈J Tij, xa ≈F xa′ =⇒ αi(x)(a) ≈F αi(x
′)(a′).

71

Honsell, Lenisa, Redamalla

Moreover, since any congruence is an F-bisimulation, by coinduction, one
can then show that ≈F is the greatest congruence.

Theorem 4.5 Let C be a class. Then the freezing behavioural equivalence ≈F

induced on C is the greatest congruence w.r.t method application.

4.2 The Graph Functor

Definition 4.6 [Graph Functor] The method declarations in S induce the
graph functor G : C → C defined by

G ,
k∏

i=1

Gi ,

where, for each unary method mi, Gi , Hi (see Definition 3.1), and for each
generalized binary method mi : X×

∏
j∈J Tij → Ti0, Gi , P(

∏
j∈J Tij× (Ti0 +

Excp + 1)).

Definition 3.3, which gives the coalgebra induced by a given class, extends
immediately to the case of the graph functor. On the contrary, the exten-
sion to the graph functor of the definition of class implementation (Definition
3.2) requires more care. Namely class implementations shall be taken to be
functional G-coalgebras.

The graph behavioural equivalence can be characterized in terms of n-ary
method contexts, which are method contexts with holes for any class parame-
ter.

Definition 4.7 [n-ary Method Context] Let C be a class, and let m be a
method of C with n (generalized) class parameters including the object, im-
plemented by α. The method m induces an n-ary context

D[] = [].α(b1, . . . , bk) ,

where bi = [], if Ti is a (generalized) class type, otherwise, if Ti is a constant
type, bi is any argument of type Ti.

Lemma 4.8 (Graph Bisimulation and Coinduction Principle) Let G =∏k
i=1 Gi be the functor induced by the method declarations in S, and let (X, 〈αi〉ki=1)

be a G-coalgebra implementing S. Then the greatest G-bisimulation on (X, 〈αi〉ki=1),
≈G, can be characterized as follows:

x ≈G x′ ⇐⇒ ∀D[]n-ary context. ∀a∃a′.(a ≈G a′ & D[x,a] ≈G D[x,a
′])

& ∀a′∃a.(a ≈G a′ & D[x,a] ≈G D[x,a
′]) .

Notice the alternation of quantifiers ∀∃ in the definition of graph be-
havioural equivalence, due to the presence of the powerset in the graph functor.

The functor G has always a final coalgebra, see e.g. [1]. In general, it
is not functional, and moreover the functionality property of a coalgebra is

72

Honsell, Lenisa, Redamalla

not preserved by the unique morphism into the final coalgebra. Therefore, the
image of a class implementation under the final morphism is not guaranteed to
be a class implementation. Thus we can lack minimal class implementations.
In Section 4.3, we study conditions for the final morphism to preserve the
functionality property, thus recovering minimal implementations.

4.3 Comparing Graph and Freezing Behavioural Equivalences

One can easily check that ≈F is a graph bisimulation, using reflexivity of ≈F .
Thus ≈F⊆≈G. The converse inclusion does not hold in general. For example,
this is the case for the class R′ obtained from the class R of registers when we
drop methods get and set, and we consider only method eq. Namely, for R′,
≈G equates all pairs of registers, while ≈F is the identity relation on registers.
Moreover, notice that in this case ≈G is not a congruence w.r.t. eq.

The following result is a fundamental tool for recovering ≈F = ≈G:

Theorem 4.9 ≈G = ≈F iff ≈G is a congruence w.r.t. the methods in the
class.

The equality ≈G = ≈F on a functional G-coalgebra is equivalent to the
fact that its image into the final coalgebra is still a functional coalgebra.
Thus Theorem 4.9 above gives an answer to the problem of minimal class
implementations for the graph functor, raised at the end of Section 4.2.

Another relevant consequence of the fact that ≈G = ≈F is a simplified
coinductive characterization of ≈F , in terms of “head” contexts, where the
hole is in head position, i.e. it corresponds to the target object:

Proposition 4.10 If ≈G = ≈F , then

x ≈F x′ ⇐⇒ ∀D[] head context. D[x] ≈F D[x′].

Theorem 4.9 above is all that we might want. However, in practice, it is
useful to have also alternative sufficient conditions. The interested reader can
see [6].

5 Relational types

The idea of treating binary methods as graphs, rather than as functions, can
be fruitfully pursued to overcome the well-known problem arising when in-
heritance is combined with subtyping, see e.g. [3]. Namely, if we type bi-
nary methods with the usual arrow type, which is contravariant, we lose the
property that subclasses are subtypes. We propose to introduce a new type
constructor, i.e. the relation type, and use this to type binary methods in
class declarations. Since relation types are purely covariant, the subtyping
property is maintained by subclasses. Binary methods can still be typed also
with the standard arrow type, which is a subtype of the corresponding rela-
tion type, see Table 2. To preserve safety, contrary to arrow types, we assume

73

Honsell, Lenisa, Redamalla

x : α M : β α ≤ α′ β ≤ β′

λxα.M : α⊗ β α⊗ β ≤ α′ ⊗ β′ α → β ≤ α⊗ β

Table 2
Typing rules for Relational Types ⊗

relation types not to be “applicable” i.e. there is no relational counterpart to
the rule : M :α→β N :α

MN :β
. This solution to the problem of typing binary methods

is quite simple, and it allows for single dispatching in method calls. Moreover,
contrary to other proposals, our proposal allows for “future code extensions”
without losing the subtyping property of classes. We will study this proposal
in a future paper.

References

[1] P.Aczel. Non-wellfounded sets, CSLI Lecture Notes 14, Stanford 1988.

[2] Aczel P., N.Mendler. A Final Coalgebra Theorem, CTCS, D.H.Pitt et al. eds.,
Springer LNCS 389, 1989, 357–365.

[3] Bruce K.B., Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith,
Valery Trifonov, Gary T. Leavens, Benjamin C. Pierce On Binary Methods,
TAPOS 1(3), 1995, 221-242.

[4] Forti M., F.Honsell. Set-theory with free construction principles, Ann. Scuola
Norm. Sup. Pisa, Cl. Sci. (4)10, 1983, 493–522.

[5] Hermida C., B.Jacobs. Structural induction and coinduction in a fibrational
setting, Information and Computation, 1998, 145(2):107-152.

[6] Honsell F., M.Lenisa, R.Redamalla. Coalgebraic Description of Generalized
Binary Methods, Technical Report, University of Udine.

[7] Jacobs B.. Objects and Classes, co-algebraically, Object-Orientation with
Parallelism and Book Persistence, B.Freitag et al. eds., Kluwer Academic
Publishers, 1996, 83–103.

[8] Jacobs B. Behaviour-refinement of object-oriented specifications with
coinductive correctness proofs, TAPSOFT’97, M.Bidoit et. al. eds., Springer
LNCS 1214, 1997, 787–802.

[9] Jacobs B., J.Rutten. A tutorial on (co)algebras and (co)induction, Bulletin of
the EATCS 62, 1996, 222–259.

[10] Reichel H. An approach to object semantics based on terminal co-algebras,
MSCS 5, 1995, 129-152.

[11] Rothe J., H. Tews and B. Jacobs. The Coalgebraic Class Specification Language
CCSL, Journal of Universal Computer Science,7(2001), pp.175-193.

[12] Tews H. Coalgebraic Methods for Object-Oriented Specifications, Ph.D. thesis,
Dresden Univ. of technology, 2002.

74

DCM 2005 Preliminary Version

Quantum Communication and Cryptography:

Introductory Concepts and State-of-the-Art

Raja Nagarajan

Department of Computer Science
The University of Warwickz

Coventry CV4 7AL

Abstract

The novel field of quantum computing and quantum information has gathered sig-
nificant impetus in the last few years, and it has the potential to radically impact the
future of information technology. While the successful construction of a large-scale
computer may be some years away, secure communication involving quantum cryp-
tography has recently been demonstrated in a scenario involving banking transac-
tions in Vienna, and practical equipment for quantum cryptography is commercially
available.

In this tutorial, I shall introduce a few basic concepts of quantum information
processing, and discuss quantum communication and cryptographic protocols. I
will also give an overview of the state-of-the-art in practical quantum cryptography.

The major selling point of quantum cryptography is unconditional security. But
can this be guaranteed in practice? Even when protocols have been mathemati-
cally proved to be secure, it is notoriously difficult to achieve robust and reliable
implementations of secure systems. I will highlight techniques that can be used for
formal modelling and analysis of quantum protocols and their implementations.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

DCM 2005 Preliminary Version

On Reversible Combinatory Logic

Alessandra Di Pierro 1

Dipartimento di Informatica, Universitá di Pisa, Italy

Chris Hankin and Herbert Wiklicky 1,1

Department of Computing, Imperial College London, United Kingdom

Abstract

The λ-calculus is destructive: its main computational mechanism – beta reduction –
destroys the redex and makes it thus impossible to replay the computational steps.
Recently, reversible computational models have been studied mainly in the context
of quantum computation, as (without measurements) quantum physics is inher-
ently reversible. However, reversibility also changes fundamentally the semantical
framework in which classical computation has to be investigated. We describe an
implementation of classical combinatory logic into a reversible calculus for which
we present an algebraic model based on a generalisation of the notion of group.

1 Introduction

It has been suggested, e.g. [11], that the standard model for computation
as embodied in Turing Machines answers the problem of what constitutes a
“computational procedure” in Hilbert’s 10th Problem by reference to mental
arithmetic as practised in previous times by European school children, accoun-
tants and waiters. This “waiter’s arithmetic” is non-reversible and destructive.
It is open to speculation whether a culture based on reversible computation
like an abacus would have developed a different basic computational model.
Quantum computation and the need for minimal energy loss make reversible
computation once again interesting, see e.g. [15]. This has been the moti-
vation for van Tonder [14] who presents a reversible applied lambda calculus
(with quantum constants); his operational semantics provided the inspiration
for the operational semantics of our reversible version rCL of Combinatory
Logic. On the other hand, the set of combinators that we consider here have

1 The authors are partly funded by the EPSRC project S77066A “Quantitative Analysis
of Computational Resources”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Di Pierro, Hankin, Wiklicky

also been studied by Abramsky [1,2], although with a different motivation,
namely the links between reversible calculus and linear logic.

Our main motivation for investigating a reversible version of Combinatory
Logic is ultimately the development of a denotational semantics of (prob-
abilistic versions of) the λ-calculus reflecting the operational semantics we
introduced in [10]. This kind of semantics is based on linear operator alge-
bras and aims to support a compositional approach to (probabilistic) program
analysis. The close relationship between reversibility and certain important
classes of linear operators – in particular unitary and normal operators – was
the starting point of a deeper investigation of the structure of reversible com-
putation.

Reversibility naturally introduces a notion of symmetry into computation
and is therefore strongly related to the theory of groups and their action, which
are considered by most mathematicians as being virtually synonymous of sym-
metry [16]. Starting from the work on invertible lambda terms we could then
use the group of permutations for the classical λ-calculus as our mathematical
base for investigating compositionality issues in the static analysis of com-
plex systems. However, the notion of automorphism associated to group is in
some sense too “trivial” to characterise the symmetry involved in a reversible
computation; it turns out that the structure of these objects can be better
characterised algebraically by using groupoids and not just groups. In fact,
the extension from groups to groupoids was formally introduced to describe
reversible processes which may traverse a number of states. These cannot be
easily captured by using group theory as this only allows us to characterise
processes which start from one point and (possibly after a number of steps)
come back to the same point. On the contrary, in groupoid theory processes
can have different start and end points but they can be composed if and only
if the starting point of one process is the end point of the previous one. In-
tuitively, a groupoid can be thought of as a group with many identities [6].
It is interesting to note that according to Connes, quantum mechanics was
discovered by considering the groupoid of quantum transitions rather than
the group of symmetry [7].

2 The Groupoid Structure of Reversible Computations

Our approach to reversible computation is based on a particular algebraic
model of computation which naturally reflects the operational meaning of
term reduction and its reverse process. This model is based on the notion of a
groupoid. A groupoid, also known as a virtual group, is an algebraic structure
introduced by Brandt [5] (for further details see e.g. [13,16,12,6]).

Definition 2.1 A groupoid with base B is a set G with mappings α and β
from G onto B, a partially defined binary operation (g, h) 7→ g · h = gh, and
an inverse map g 7→ g−1 from G to G satisfying the following conditions:

77

Di Pierro, Hankin, Wiklicky

(i) gh is defined whenever β(g) = α(h), and in this case α(gh) = α(g) and
β(gh) = β(h).

(ii) if gh and hk are defined then so are (gh)k and g(hk) and they are equal
(associativity).

(iii) For each g ∈ G, there are left- and right-identity elements λg and %g

satisfying λgg = g = g%g.

(iv) Each g ∈ G has an inverse g−1 satisfying g−1g = %g and gg−1 = λg.

An important property of groupoids is that α(g) and λg (β(g) and ρ(g))
determine one another, that is there is a bijection between the base B and the
set of all the identity elements of G. This implies that identities are essentially
unique, or in other words there is only one object which is “composable” on
the left (right) with a given object g.

Consider a set of ‘computational processes’ C = {Ci}i, such as for example
those specified via some programs in a formal programming language. Among
the elements in C we would usually expect to find a ‘neutral’ or ‘identity com-
putation’, that is intuitively a computational process which does not change
any input state, such as for example a skip statement in a while language.
We would also usually be able to define a way to compose two processes se-
quentially, in the sense that we can feed the result of one computation C1 into
another computation C2 by obtaining a new one usually denoted by C1; C2 or
C2◦C1. Moreover, In order for the computation be reversible we need a notion
of symmetry. These general ideas which essentially identify reversible compu-
tation with some kind of (symbolic) dynamical process establish a groupoid
structure on C. In order to see this more precisely, consider a calculus with a
notion of “reduction” i.e. a transition relation // between terms T, . . . ∈ T ,
and its transitive and reflexive closure // // . Define a computational groupoid
G = G(T , // //) as follows:

• G ⊆ T × T with (T, T ′) ∈ G iff T // // T ′.

• B = T
• α((T, T ′)) = T and β((T, T ′)) = T ′

• (T, T ′) · (T ′, T ′′) = (T, T ′′)

• λ(T,T ′) = (T, T) and %(T,T ′) = (T ′, T ′)

• (T, T ′)−1 = (T ′, T).

Intuitively, we can reverse a computation for a term T ∈ T if we keep infor-
mation about its ‘history’, i.e. information about the transition steps that have
been performed during the computation. A highly expensive way to make the
transition relation // reversible is to use as history all strings H ∈ H = T ∗

of terms in T and replace each transition T1
// T2, by 〈T1 | H〉 // // 〈T2 | HT1〉

for all H ∈ H. In this way we record the complete history of the previous
terms and it is easy to see that computation is now reversible, i.e. we can
reverse a derivation path until we reach the initial term.

78

Di Pierro, Hankin, Wiklicky

In general, we might be interested in a more “efficient” way of recording
the derivation history of a term. However, it depends on the nature and
structure of the original calculus what information the history has to record;
for example, in Van Tonder’s λ-calculus [14] the history keeps track only of
the substitutions which take place in each β-reduction step.

3 Combinatory Logic

Combinatory Logic (CL) is a formalism which (similarly to the λ-calculus) was
introduced to describe functions and certain primitive ways to combine them
to form other functions. With respect to the λ-calculus it has the advantage
that is variable free; this allows one to avoid all the technical complications
concerned with substitutions and congruence. It has on the other hand the
disadvantage of being less intuitive than the λ-notation. For the purpose of
this work we have opted for this more involved formalism because it allows for
a more agile treatment and definition of our notion of reversible computation.

Definition 3.1 [Combinatory Logic Terms] The set of combinatory logic terms,
CL-terms, over a finite or infinite set of constants containing K and S and an
infinite set of variables is defined inductively as follows:

(i) all variables and constants are CL-terms,

(ii) if X and Y are CL-terms, then (XY) is a CL term.

The two combinators S and K form a common basis for combinatory logic.
However, other sets of basic combinators can be defined. We will use the base
consisting of four basic operations encoded in the combinators B (implement-
ing bracketing), C (elementary permutations), W (duplication), and K (for
deletion) which are defined as follows (cf [8, p379]):

K ≡ λxy.x, W ≡ λxy.xyy, C ≡ λxyz.xzy, B ≡ λxyz.x(yz).

Importantly, we can use B, W and C to implement the common combinator
S (cf [8, p155]):

S ≡ B(B(BW)C)(BB).

In order to generate equalities provable in this calculus we use a notion of
reduction similar to the weak reduction for the SK-calculus [3]. This is defined
as the smallest extension of the relation on CL-terms induced by the basic
operators which is compatible with application.

Definition 3.2 The reduction relation // on CL-terms is defined by the
following rules:

(i) KXY // X,

(ii) WXY // XY Y ,

(iii) CXY Z // XZY ,

(iv) BXY Z // X(Y Z),

(v) X // X ′ implies XY // X ′Y ,

(vi) X // X ′ implies Y X // Y X ′,

We will denote by // // the reflexive transitive closure of // .

79

Di Pierro, Hankin, Wiklicky

The relation between the λ-calculus and CL is a standard result (cf. [3,
p156]). With reference to the standard base {S, K} there is a canonical encod-
ing ()CL of λ terms in CL terms. It is a well known result that in presence
of a rule for extensionality the two theories λ-calculus and CL(which are in
general not equivalent) become equivalent (cf.[3, Def 7.3.14]).

3.1 Invertible Terms

The assumption of extensionality is also essential in the investigation of in-
vertibility, as shown in [9,4] in the context of λ-calculus.

Within the theory CL+ext that is CL extended with the rule (cf [3,
Def 7.1.10]):

Px = P ′x with x 6∈ FV (PP ′) implies P = P ′,

we can characterise the invertible combinatory logic terms. We first observe
that a semi-group structure on the extended theory CL+ext is given by
defining a composition of terms by means of the B combinator as

X · Y = BXY

as for all Z we get (X ·Y)Z = BXY Z = X(Y Z). This operation is associative
and can be seen as implementing ‘sequential’ or ‘functional composition’. In
the λ-calculus it is defined by

M ·N = λz.M(Nz)

for any two λ-terms M, N .

Moreover, we can take the I combinator as the identity; in the λ-calculus
this is given, for example, by the term λx.x.

Naturally, the question arises which terms of a calculus like CL+ext form
a group, i.e. for which terms X we have an element X−1 (the inverse) such
that

X ·X−1 = X−1 ·X = I.

The classically invertible CL terms are all those terms X for which there is
a Y such that BXY = BY X = I holds (cf also [8, Sect 5.D.5 and Def 5.D.1]).
A very simple example of an invertible term is the identity combinator I which
is its own inverse. In fact, we have that I · I = BII = I. However, in calculi
without extensionality this might be about the only example of an invertible
term. According to [3, Section 21.3] the invertible terms in the λ-calculus
(without extensionality) form the trivial group {I}. Extensionality is therefore
needed to obtain some non-trivial invertible elements. It allows us to show
for example that C = C−1, i.e. C is its own inverse. This is intuitively clear
as the combinator C is essentially representing a transposition of its 2nd and
3rd argument and permutations are reversible. Dezani [9] and Bergstra and
Klop [4] have studied the problem of how to describe the invertible elements in
different calculi and theories. This also resulted in a description of the group
of all invertible elements in the λη-calculus (cf. [3, Ch 21]).

80

Di Pierro, Hankin, Wiklicky

Contrary to the classical approach we will define a calculus which is re-
versible in the sense that all reductions in the calculus are invertible. The
new reversible calculus will be an extension of the CL+ext theory, so that
all classical CL+ext reductions will still be reductions in the new calculus.

4 Reversible Combinatory Logic

Providing a mechanism to record the computational history of a term allows
us to define a reversible version of CL, which we will call rCL.

Formally, we define a reversible combinatory logic term, or rCL-term, as
a pair 〈M | H〉, where M is a classical CL-term, which we refer to as the
proper term, and H is a list of elements S which record the reduction steps
S (forward execution) and their expansion steps S (backward execution). We
refer to H as the history term and define its syntax by

H ::= ε | S : H | S : H

S ::= TKm
n | Wm

n | Bm
n | Cm

n

with T a classical CL-term and n, m ∈ N. We denote by H be the set of all
history terms. The meaning of the two numbers n and m is to record the exact
point in the term in which the combinator, i.e. its corresponding reduction
rule, is applied, and the length of prefix of the reduced term, respectively.
This information is important to guarantee a unique replay of all reduction
steps. We will often omit ε and use blank to represent the empty history. We
will denote by S + l with l ∈ N a history step where the position reference is
increased by l, e.g. TKm

n + l = TKm
n+l and by H + l a position shift applied to

a whole history, i.e. H + l = S1 + l : S2 + l : . . . : Sk + l.

Formally, we define the function len on classical CL-terms by:

len(X) =

 1 if X is a constant or variable

n + m if X = (Y Z) with len(Y) = n and len(Z) = m.

The reversible (forward) reduction relation on rCL is defined by:

(i) 〈KXY | 〉 // // 〈X | Y K
len(X)
0 〉,

(ii) 〈WXY | 〉 // // 〈XY Y |Wlen(X)
0 〉,

(iii) 〈CXY Z | 〉 // // 〈XZY | Clen(X)
0 〉,

(iv) 〈BXY Z | 〉 // // 〈X(Y Z) | Blen(X)
0 〉,

The reversible (backward) reduction relation on rCL is defined by:

(i) 〈X | 〉 // // 〈KXY | Y K
len(X)

0 〉,

(ii) 〈XY Y | 〉 // // 〈WXY |Wlen(X)

0 〉,

(iii) 〈XZY |〉 // // 〈CXY Z | C
len(X)

0 〉,

(iv) 〈X(Y Z)|〉 // // 〈BXY Z| Blen(X)

0 〉,
Additionally the assume the following structural rules:

(i) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈XY | 〉 // // 〈X ′Y | H ′〉,
(ii) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈Y X | 〉 // // 〈Y X ′ | H ′ + len(Y)〉,
(iii) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈X | H〉 // // 〈X ′ | H : H ′〉.
(iv) 〈X | H : H〉 // // 〈X | 〉 and 〈X | H : H〉 // // 〈X | 〉.

81

Di Pierro, Hankin, Wiklicky

The last two rules allows us to go back to the starting point by reversing
the history. For example:

〈W | 〉 // // 〈KWB | BK
1

0〉 // // 〈W | BK
1

0 : BK1
0〉 // // 〈W | 〉, and

〈KWB | 〉 // // 〈W | BK1
0〉 // // 〈KWB | BK1

0 : BK
1

0〉 // // 〈KWB | 〉

This also shows that the histories BK
1

0 and BK1
0 are (right and left) inverses of

each other (cf. Section 4.1). We denote by // // // the reflexive and transitive
closure of // // .

Example 4.1 Without the position references the following two terms reduce
to the same term:

〈K(CW)C | 〉 // // 〈CW | CK〉 and 〈KCCW | 〉 // // 〈CW | CK〉
It is therefore impossible to tell where 〈CW | CK〉 came from. However with
position information we have

〈K(CW)C | 〉 // // 〈CW | CK2
0〉 and 〈KCCW | 〉 // // 〈CW | CK1

0〉

The position information also allows us to encode different reduction strate-
gies (n = 0 indicates left-most reduction) as in the following example.

Example 4.2 Let us consider the classical term W(BXY Z)K. It has two
possible reduction paths which are reflected in the history terms:

〈W(BXY Z)K | 〉 // // 〈(BXY Z)KK | W4
0〉 // // 〈(X(Y Z))KK | W4

0 : B1
0〉 and

〈W(BXY Z)K | 〉 // // 〈(W(X(Y Z))K | B1
1〉 // // 〈(X(Y Z))KK | B1

1 : W3
0〉

Classical combinatory logic can be embedded in rCL by representing any
CL-term M with a rCL-term T of the form 〈M | ε〉. We can show that
the weak reduction relation for CL-terms can be simulated by the reversible
reduction relation on rCL. This is implied by the following more general
result.

Proposition 4.3 For every M ∈ CL we have:

M // // N or N // // M iff ∀H ∈ H ∃H ′ ∈ H : 〈M | H〉 // // // 〈N | H ′〉.

4.1 The History Group H

For a history H = S1 : S2 : . . . : Sn−1 : Sn ∈ H, we define its formal inverse

H = S1 : S2 : . . . : Sn−1 : Sn = Sn : Sn−1 : . . . : S2 : S1

with the following properties: (i) H = H and (ii) H : H = ε.

It is easy to see that by construction the set of histories H forms a group
with with respect to the composition operation “:”.

The inverse of a history and the inverse of a classical CL term, if it exists,
are closely related. The inverse history can, to a certain degree, simulate the
effects of the inverse term. In order to establish this relation, we first show how
the group structure of the history terms interacts with the reversible reduction
rules introduced before.

82

Di Pierro, Hankin, Wiklicky

Lemma 4.4 Let X be a classical CL term, and let H ∈ H. Then

〈X | 〉 // // // 〈X ′ | H〉 iff 〈X ′ | 〉 // // // 〈X | H〉.

Proof. As H : H ≡ H : H = ε, we have

〈X | H〉 // // // 〈X ′ | H : H〉 ≡ 〈X ′ | 〉
and thus by the reversible backward reduction rules

〈X ′ | 〉 // // // 〈X | H〉.
2

We can now show that for classical invertible terms M, histories can be
used to simulate a reduction for the inverse M−1 given a reduction for M .

Proposition 4.5 Let M be an invertible term in CL. Given a history H ∈ H
and two CL terms N1 and N2 such that

〈MN1 | 〉 // // // 〈N2 | H〉.
Then there exist H ′, H ′′ ∈ H such that

〈M−1N2 | H ′′〉 // // // 〈N1 | H ′〉.

Proof. By Lemma 4.4 and the hypothesis we have that 〈N2 | 〉 // // // 〈MN1 |H〉.
Using the history H and again Lemma 4.4, we get

〈M−1N2 | H + len(M−1)〉 // // // 〈M−1MN1 | 〉.
Therefore

〈M−1N2 | H + len(M−1 + 1 : B
len(M−1

0 〉 // // 〈BM−1N2 | H + len(M−1 + 1〉
// // // 〈BM−1MN1 | 〉

def
= 〈(M−1 ·M)N1 | 〉 // // // 〈N1 | H ′〉.

2

4.2 The Groupoid of Reversible Computations

Given a group G and a set X, a group action of G on X is defined as a
homomorphism π of G into the automorphism group of X, i.e. π(g) ∈ Aut(X)
such that π(e) = id, and π(gh)(x) = π(g)(π(h)(x)). Given a group action π
of G on X we can define a groupoid G = G(X, G, π) as follows:

• G ⊆ X ×G×X with (x, g, y) ∈ G iff π(g)(x) = y.

• B = X

• α((x, g, y)) = x and β((x, g, y)) = y

• (x, g, y) · (y, h, z) = (x, hg, z)

• λ(x,g,y) = (x, e, x) and %(x,g,y) = (y, e, y)

• (x, g, y)−1 = (y, g−1, x).

We show that the set of reversible computations is the groupoid defined
by the action of the history group H on the set of rCL terms. Intuitively, this

83

Di Pierro, Hankin, Wiklicky

Groupoids

Group Actions

Equivalence Relations

Groups

Fig. 1. Groups, Group Actions and Equivalence Relations

means that each history term determines a permutation on rCL corresponding
to a reversible computation, and vice versa.

Consider the groupoid G defined by the action π of H on rCL given by

π(H)(〈M | H ′〉) = 〈M | H ′ : H〉

The computational groupoid G(rCL, // // //) constructed as in Section 2 using
the transition relation // // // on rCL terms, and the group action groupoid
G(rCL,H, π) defined above are isomorphic. The isomorphism is given by
simply forgetting about the “connecting history”.

Proposition 4.6 The map δ : G(rCL,H, π) → G(rCL, // // //) which is defined
as δ(〈T, H, T ′〉) = 〈T, T ′〉, i.e. δ = (α, β), is a groupoid isomorphism.

5 Conclusion

We have introduced a reversible version rCL of Combinatory Logic where
terms are enriched with a “history” part which allows us to uniquely “replay”
every computational step. We have utilised the structure of a groupoid to
model computation in rCL.

Groupoids can bee seen as a generalisation of several mathematical struc-
tures, such as groups, group actions and equivalence relations, as shown in
Figure 1 (cf. [12]). The last two structures are particularly relevant for our
treatment of rCL. In fact, the computational paths of a reversible calcu-
lus can be seen as the orbits of a group acting on some space, in our case
the history group acting on the space of rCL terms. On the other hand,
the equational theory of a calculus introduces an equivalence relation on the
terms. Groupoids are therefore able to accommodate the operational seman-
tics as well as the equational theory of rCL.

Further work will concentrate on constructing a denotational semantics
for rCL based on the groupoid structure presented here. Our aim is in a
compositional definition of transition operators which serves as a basis for
semantics-based analysis techniques for the λ-calculus. For this we hope to
exploit well-established results on the relation between operator algebras (in
particular C∗ algebras) and groupoids [13]. Furthermore, we believe that
reversible combinatory logic can in principle be used for a (maybe highly
inefficient) translation of classical into quantum computation.

84

Di Pierro, Hankin, Wiklicky

References

[1] Abramsky, S., A structural approach to reversible computation, in: Proceedings
of LCCS 2001, 2001, pp. 1–16.

[2] Abramsky, S., E. Haghverdi and P. Scott, Geometry of interaction and linear
combinatory algebras, Mathematical Structures in Computer Science 12 (2002),
pp. 625–665.

[3] Barendregt, H. P., “The Lambda Calculus,” Studies in Logic and the
Foundations of Mathematics 103, North-Holland, 1984, revised edition.

[4] Bergstra, J. and J. W. Klop, Invertible terms in the lambda calculus, Theoretical
Computer Science 11 (1980), pp. 19–37.

[5] Brandt, W., Über eine Verallgemeinerung des Gruppengriffes, Mathematische
Annalen 96 (1926), pp. 360–366.

[6] Brown, R., From groups to groupoids: a brief survey, Bull. London Math. Soc.
19 (1987), pp. 113–134.

[7] Connes, A., “Noncommutative Geometry,” Academic Press, San Diego, 1994.

[8] Curry, H. B. and R. Feys, “Combinatory Logic,” North-Holland, 1958.

[9] Dezani-Ciancaglini, M., Characterization of normal forms possesing inverse in
the λ− β − η-calculus, Theoretical Computer Science 2 (1976), pp. 323–337.

[10] Di Pierro, A., C. Hankin and H. Wiklicky, Probabilistic lambda-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159–179.

[11] Mundici, D. and W. Sieg, Paper machines, Philosophica Mathematica Series
III, 3 (1995), pp. 5–30.

[12] Ramsay, A. and J. Renault, editors, “Groupoids in Analyis, Geometry, and
Physics,” Contemporary Mathematics 282, AMS, Providence, RI, 2001.

[13] Renault, J., “A Groupoid Approach to C∗-Algebras,” Lecture Notes in
Mathematics 793, Springer Verlag, Berlin – Heidelberg – New York, 1980.

[14] van Tonder, A., A lambda calculus for quantum computation, SIAM Journal of
Computation 33 (2004), pp. 1109–1135.

[15] Vitanyi, P., Time, space, and energy in reversible computing, in: Proceedings of
the ACM International Conference on Computing Frontiers, 2005.

[16] Weinstein, A., Groupoids: Unifying internal and external symmetry, Notices of
the AMS 43 (1996), pp. 744–752.

85

DCM 2005 Preliminary Version

Classically-controlled Quantum Computation

Simon Perdrix 1 Philippe Jorrand 2

Leibniz Laboratory
IMAG-INPG

Grenoble, France

Abstract

It is reasonable to assume that quantum computations take place under the con-
trol of the classical world. For modelling this standard situation, we introduce a
Classically-controlled Quantum Turing Machine (CQTM) which is a Turing ma-
chine with a quantum tape for acting on quantum data, and a classical transition
function for a formalized classical control. In CQTM, unitary transformations and
quantum measurements are allowed. We show that any classical Turing machine is
simulated by a CQTM without loss of efficiency. Furthermore, we show that any
k-tape CQTM is simulated by a 2-tape CQTM with a quadratic loss of efficiency.
The gap between classical and quantum computations which was already pointed
out in the framework of measurement-based quantum computation (see [14]) is con-
firmed in the general case of classically-controlled quantum computation. In order
to appreciate the similarity between programming classical Turing machines and
programming CQTM, some examples of CQTM will be given in the full version of
the paper. Proofs of lemmas and theorems are omitted in this extended abstract.

Key words: Classically-Controlled Quantum Computation,
Quantum Turing Machine

1 Introduction

Quantum computations operate in the quantum world. For their results to be
useful in any way, by means of measurements for example, they operate under
the control of the classical world. Quantum teleportation [1] illustrates the im-
portance of classical control: the correcting Pauli operation applied at the end
is classically controlled by the outcome of a previous measurement. Another
example of the importance of classical control is measurement-based quantum
computation [10,12,15,14,16,5], where classical conditional structures are re-
quired for controlling the computation. This classical control may be described

1 Email: simon.perdrix@imag.fr
2 Email: philippe.jorrand@imag.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Perdrix and Jorrand

as follows: “if the classical outcome of measurement number i is λ, then mea-
surement number i + 1 is on qubit qa according to observable Oa, otherwise
measurement number i+ 1 is on qubit qb according to observable Ob”. A par-
ticularly elegant formalization of measurement-based quantum computation
is the measurement calculus [5].

The necessity of integrating the classical control in the description of quan-
tum computations is a now well understood requirement in the design of high
level languages for quantum programming [7,17]. There are also some proposi-
tions of lower level models of computation integrating classical control, like the
quantum random access machines (QRAM[9,2]). However there exist no for-
mal and abstract model of quantum computation integrating classical control
explicitly. This paper aims at defining such an abstract model of classically-
controlled quantum computation.

One of the main existing abstract models of quantum computation is the
Quantum Turing Machine (QTM) introduced by Deutsch [4], which is an
analogue of the classical Turing machine (TM). It has been extensively studied
by Bernstein and Vazirani [3]: a quantum Turing machine is an abstract
model of quantum computers, which expands the classical model of a Turing
machine by allowing a quantum transition function. In a QTM, superpositions
and interferences of configurations are allowed, but the classical control of
computation is not formalized and inputs and outputs of the machine are
still classical. This second point means that the model of QTM explores the
computational power of quantum mechanics for solving classical problems,
without considering quantum problems, i.e. quantum input/output.

While models dealing with quantum states like quantum circuits [8,19] and
QRAM, are mainly used for describing specific algorithms, the development
of complexity classes, like QMA [18], which deal with quantum states, points
out the necessity of theoretical models of quantum computation acting on
quantum data.

The recently introduced model of Linear Quantum Turing Machine (LQTM)
by S. Iriyama, M. Ohya, and I. Volovich [6] is a generalization of QTM dealing
with mixed states and allowing irreversible transition functions which allow
the representation of quantum measurements without classical outcomes. As
a consequence of this lack of classical outcome, the classical control is not
formalized in LQTM, and, among others, schemes like teleportation cannot
be expressed. Moreover, like QTM, LQTM deals with classical input/output
only.

We introduce here a Classically-controlled Quantum Turing Machine (CQTM)
which is a TM with a quantum tape for acting on quantum data, and a clas-
sical transition function for a formalized classical control. In CQTM, unitary
transformations and quantum measurements are allowed. Notice that the
model of CQTM restricted to projective measurements is equivalent to the
model of measurement-based quantum Turing machines (MQTM) introduced
in [14]. Theorem 2.1 shows that any TM is simulated by a CQTM with-

87

Perdrix and Jorrand

out loss of efficiency. In section 3, CQTM with multiple tapes is introduced.
Theorem 3.1 shows that any k-tape CQTM is simulated by a 2-tape CQTM
with a quadratic loss of efficiency. Moreover, the gap between classical and
quantum computations which was already pointed out in the framework of
measurement-based quantum computation (see [14]) is confirmed in the gen-
eral case of classically-controlled quantum computation. A perspective is to
make the CQTM not only a well defined theoretical model but also a bridge
to practical models of quantum computations like QRAM, by relying on the
fact that natural models of quantum computations are classically controlled.

2 Classically-controlled Quantum Turing Machines

2.1 Quantum states and admissible transformations

The quantum memory of a CQTM is composed of quantum cells. A quantum
cell is a d-level quantum system [11], its state is a normalized vector in a
d-dimensional Hilbert space. A basis of this Hilbert space is described by a
finite alphabet of symbols ΣQ such that |ΣQ| = d. The state |φ〉 ∈ HΣQ

of a
quantum cell is

|φ〉 =
∑

τ∈ΣQ

ατ |τ〉 ,

with
∑

τ∈ΣQ
|ατ |2 = 1.

General quantum measurements operate according to the corresponding
postulate of quantum mechanics: quantum measurements are described by a
collection {Mτ1 , . . . ,Mτk

} of measurement operators acting on the state space
of the system being measured. The index τ refers to the measurement out-
comes that may occur in the experiment. If the state of the quantum system
is |ψ〉 immediately before the measurement then the probability that the clas-
sical result τ occurs is given by

p(τ) = 〈ψ|M †
τMτ |ψ〉 ,

and the state of the system after the measurement is

Mτ |ψ〉√
p(τ)

.

The measurement operators satisfy the completness equation,∑
τ

M †
τMτ = I.

General quantum measurements are also called admissible transformations.
Notice that admissible transformations which are composed of only one op-
erator Mτ are nothing but unitary transformations since p(τ) = 1, the state
after the transformation is Mτ |ψ〉 and the completeness equation reduces to

88

Perdrix and Jorrand

M †
τMτ = I. Conversely, any unitary transformation A is an admissible trans-

formation.

For a given Hilbert spaceHΣQ
, we exhibit some admissible transformations

with classical results belonging to a finite set ΣC = ΣQ ∪ ΣQ ∪ {λ}, where
ΣQ = {τ : τ ∈ ΣQ} and λ /∈ ΣQ:

• Std = {Mτ}τ∈ΣQ
is a projective measurement in the standard basis: ∀τ ∈

ΣQ,Mτ = |τ〉 〈τ |,
• Tτ = {Mτ ,Mτ} is a test for the symbol τ : Mτ = |τ〉 〈τ | and Mτ = I−|τ〉 〈τ |,
• P[τa,τb] = {Mλ} is a unitary transformation with outcome λ, and Mλ =

(
∑

τ∈ΣQ−{τa,τb} |τ〉 〈τ |) + |τa〉 〈τb| + |τb〉 〈τa| is a permutation of the symbols
τa and τb.

• UV = {Mλ} is the unitary transformation Mλ = V , with classical outcome
λ.

• OO = {Pk}k, is a projective measurement according to the observable O =
ΣkPk.

2.2 Defining a CQTM

For completeness, definition 2.1 is the definition of a deterministic TM [13].
A classically-controlled quantum Turing machine (definition 2.2) is composed
of a quantum tape of quantum cells, a set of classical internal states and a
head for applying admissible transformations to cells on the tape. The role of
the head is crucial because it implements the interaction across the boundary
between the quantum and the classical parts of the machine.

Definition 2.1 A deterministic (classical) Turing Machine is defined by a
triplet M = (K,Σ, δ), where K is a finite set of states with an identified
initial state s, Σ is a finite alphabet with an identified “blank” symbol #, and
δ is a deterministic transition:

δ : K × Σ→ (K ∪ {“yes”, “no”, h})× Σ× {←,→,−}.

We assume that h (the halting state), “yes” (the accepting state) and “no”
(the rejecting state) are not in K.

Definition 2.2 A Classically-controlled Quantum Turing Machine is a quin-
tuple M = (K,ΣC ,ΣQ,A, δ). Here K is a finite set of classical states with
an identified initial state s, ΣQ is a finite alphabet which denotes basis states
of quantum cells, ΣC is a finite alphabet of classical outcomes, A is a set of
one-quantum cell admissible transformations, and δ is a classical transition
function:

δ : K × ΣC → (K ∪ {“yes”, “no”, h})× {←,→,−} ×A.

We assume that h (the halting state), “yes” (the accepting state) and “no”
(the rejecting state) are not in K, and that all possible classical outcomes

89

Perdrix and Jorrand

of each measurement of A are in ΣC . Moreover we assume that ΣQ always
contains a “blank” symbol #, ΣC always contains a “blank” symbol # and
a “non-blank” symbol #, and A always contains the admissible “blank test”
transformation T#.

The function δ is a formalization of the classical control of the quantum
computation and can also be viewed as the “program” of the machine. It spec-
ifies, for each combination of current state q ∈ K and last obtained classical
outcome τ ∈ ΣC , a triplet δ(q, τ) = (p,D,A), where p is the next classi-
cal state, D ∈ {←,→,−} is the direction in which the head will move, and
A ∈ A is the admissible transformation to be performed next. The blank test
admissible transformation {M#,M#} establishes a correspondence between
the quantum blank symbol (#) and the classical blank (#) and non-blank
(#) symbols: if the state |φ〉 of the measured quantum cell is |#〉, the out-
come of the measurement is # whereas if |φ〉 is orthogonal to |#〉 (〈φ |#〉 = 0)
then the outcome is #.

How does the program start? The quantum input of the computation |φ〉 =∑
τ∈(ΣQ−{#})n ατ |τ〉, which is in general unknown, is placed on n adjacent cells

of the tape, while the state of all other quantum cells of the tape is |#〉. The
head is pointing at the blank cell immediately located on the left of the input.
Initially, the classical state of the machine is s and # is considered as the last
classical outcome, thus the first transition is always δ(s,#).

How does the program halt? The transition function δ is total on K ×ΣC

(irrelevant transitions will be omitted from its description). There is only one
reason why the machine cannot continue: one of the three halting states h,
“yes”, and “no” has been reached. If a machine M halts on input |φin〉, the
output M(|φin〉) of the machine M on |φin〉 is defined. If states “yes” or “no”
are reached, then M(|φin〉) = “yes” or “no” respectively. Otherwise, if halting
state h is reached then the output is the state |φout〉 of the tape of M at the
time of halting. Since the computation has gone on for finitely many steps,
only a finite number of cells are not in the state |#〉. The output state |φout〉 is
the state of the finite register composed of the quantum cells from the leftmost
cell in a state which is not |#〉 to the rightmost cell in a state which is not
|#〉. Naturally, it is possible that M never halts on input |φin〉. If this is the
case we write M(|φin〉) =↗.

A configuration of a CQTM M is intuitively a complete description of
the current state of the computation. Formally, a configuration is a triplet
(q, τ, |ψ〉), where q ∈ K ∪ {h, “yes”, “no”} is the internal state of M , τ ∈ ΣC

is the last obtained outcome, and |ψ〉 ∈ HΣ′
Q

represents the state of the tape

and the position of the head. Here Σ′
Q = ΣQ ∪ ΣQ, where ΣQ = {τ : τ ∈ ΣQ}

is a set of pointed versions of the symbols in ΣQ. From a state |φ〉 ∈ HΣQ
of

the tape, the state |ψ〉 ∈ HΣ′
Q

is obtained by replacing the symbol of ΣQ by
the corresponding symbol of ΣQ for the quantum cell pointed at by the head.

For instance, if K = {q1, q2}, ΣC = {#,#, t, u, v} and ΣQ = {#, a, b}, the

90

Perdrix and Jorrand

configuration

(q1, u,
1√
2
(|a#bb〉+ |b#ab〉))

means that the internal state of the machine is q1, the last outcome is u, the
state of the tape is 1√

2
(|a#bb〉+ |b#ab〉), and the head is pointing at the third

cell from the right.

3 CQTM and TM

The following theorem shows that any TM is simulated by a CQTM without
loss of efficiency.

Theorem 3.1 Given any TM MC operating in time f(n), where n is the
input size, there exists a CQTM MQ operating in time O(f(n)) and such that
for any input x, MC(x) = MQ(|x〉)

Since any TM is simulated by a CQTM without loss of efficiency, the
model of CQTM is classically universal (see [14] for definitions of classical
and quantum universalities), but, as will be shown in Lemma 4.4, CQTM
with one tape are not quantum universal, because only one-cell admissible
transformations are allowed. In order to allow transformations on more than
one cell, we introduce multiple tapes CQTMs. Intuitively, with k heads, k-cell
admissible transformations can be performed.

4 CQTM with multiple tapes

We introduce a generalization of the CQTM, the classically-controlled Turing
machine with multiple tapes. We show that any k-tape CQTM is simulated
by a 2-tape CQTM with an inconsequential loss of efficiency. Moreover, by
showing that 1- and 2-tape CQTM are not equivalent, we point out a gap
between classical and quantum computations.

Definition 4.1 A k-tape Classically-controlled Quantum Turing Machine where
k > 0, is a quintuple M = (K,ΣC ,ΣQ,A, δ), where K is a finite set of classical
states with an identified initial state s, ΣQ is a finite alphabet which denotes
basis states of each quantum cell. A is a set of k-cell admissible transfor-
mations, ΣC is a finite alphabet of classical outcomes of k-cell admissible
transformations and δ is a classical transition function

δ : K × ΣC → (K ∪ {“yes”, “no”, h})× ({←,→,−})k ×A.

We assume that all possible classical outcomes of each measurement ofA are in
ΣC and that A always contains the k admissible “blank test” transformations,
one for each tape of the machine.

Intuitively, δ(q, τ) = (q′, (D1, . . . Dk), A) means that, if M is in state q and
the last classical outcome is τ , then the next state will be q′, the k heads of

91

Perdrix and Jorrand

the machine will move according to D1, . . . , Dk and the next k-quantum cell
admissible transformation will be A. This admissible transformation will be
performed on the k quantum cells pointed at by the heads of the machine
after they have moved. A k-cell admissible transformation A can be defined
directly, for instance by use of a k-cell unitary transformation V (A = UV). A
can also be defined as a composition of two admissible transformations A1, A2

respectively on j and l cells such that j+ l = k, then A = [A1, A2] means that
the first j heads apply A1 and, simultaneously, the last l heads apply A2. The
classical outcome is the concatenation of the outcomes of A1 and A2, where λ
is the unit element of the concatenation (i.e. τ.λ = τ).

A k-tape CQTM starts with an input state |φ〉 on a specified tape T1, and
if the halting state h is reached, the machine halts and the output is the state
of the specified tape T1.

Theorem 4.2 Given any k-tape CQTM M operating in time f(n), where n
is the input size, there exists a 2-tape CQTM M ′ operating in time O(f(n)2)
and such that for any input |ψ〉 ,M(|ψ〉) = M ′(|ψ〉).

Theorem 4.1 is a strong evidence of the power and stability of CQTMs:
adding a bounded number of tapes to a 2-tape CQTM does not increase
their computational capabilities, and impacts their efficiency polynomially
only. This stability makes 2-tape CQTMs a good candidate for quantum
universality, i.e. the ability to simulate any quantum computation. This
ability is proved with the following two lemmas:

Lemma 4.3 Any pattern of the measurement calculus [5] can be simulated in
a time polynomial in the size of the pattern by a 2-tape CQTM.

Lemma 4.4 Any quantum circuit can be simulated by a 2-tape CQTM in
polynomial time.

The following lemma shows that some 2-tape CQTMs cannot be simulated
by 1-tape CQTMs:

Lemma 4.5 There exists a 2-tape CQTM M such that no 1-tape CQTM
simulates M .

To sum up, two tapes are enough for quantum computation (Lemma 4.3),
whereas one tape is enough for classical computation (Theorem 3.1) but not
for quantum computation (Lemma 4.4). Thus a gap between classical and
quantum computations appears. Notice that this result does not contradict
the equivalence, in terms of decidability, between classical and quantum com-
putations: the gap appears iff quantum data are considered.

One may wonder why 1-tape CQTMs are not quantum universal whereas
Briegel and Raussendorf have proved, with their One-way quantum computer,
that one-qubit measurements are universal [16]. The proof by Briegel and
Raussendorf is given with a strong assumption which is that there exists a

92

Perdrix and Jorrand

grid of auxiliary qubits which have been initially prepared, by some unspeci-
fied external device, in a globally entangled state (the cluster state), whereas
creation of entanglement is a crucial point in the proof of Lemma 4.4. More-
over, another strong assumption of one-way quantum computation is that the
input state |ϕ〉 has to be classically known (i.e. a mathematical description of
|ϕ〉 is needed), whereas the manipulation of unknown states (i.e. manipulation
of qubits in an unknown state) is usual in quantum computation (e.g. tele-
portation [1]). Since none of these assumptions are verified by 1-tape CQTM,
the previous results do not contradict the results of Briegel and Raussendorf.

5 Conclusion

This paper introduces a new abstract model for quantum computations, the
model of classically-controlled quantum Turing machines (CQTM). This model
allows a rigorous formalization of the inherent interactions between the quan-
tum world and the classical world during a quantum computation. Any clas-
sical Turing machine is simulated by a CQTM without loss of efficiency, more-
over any k-tape CQTM is simulated by a 2-tape CQTM affecting the execution
time only polynomially.

Moreover the gap between classical and quantum computations which was
already pointed out in the framework of measurement-based quantum com-
putation (see [14]) is confirmed in the general case of classically-controlled
quantum computation.

The classically-controlled quantum Turing machine is a good candidate
for establishing a bridge between, on one side, theoretical models like QTM,
CQTM, MQTM [14] and on the other side practical models of quantum com-
putation like quantum random access machines.

References

[1] C. Bennett et al. Teleporting an unknown quantum state via dual classical and
EPR channels, Phys Rev Lett, 1895-1899, 1993.

[2] S. Bettelli, L. Serafini, and T. Calarco. Toward an architecture for quantum
programming, arXiv, cs.PL/0103009, 2001.

[3] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Compt. 26,
1411-1473, 1997.

[4] D. Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer, Proceedings of the Royal Society of London A 400, 97-117,
1985.

[5] V. Danos, E. Kashefi, P. Panangaden The Measurement Calculus , e-print arXiv,
quant-ph/0412135.

93

Perdrix and Jorrand

[6] S. Iriyama, M. Ohya, I. Volovich. Generalized Quantum Turing Machine and
its Application to the SAT Chaos Algorithm, arXiv, quant-ph/0405191, 2004.

[7] Ph. Jorrand and M. Lalire. Toward a Quantum Process Algebra, Proceedings
of the first conference on computing frontiers, 111-119, 2004, e-print arXiv,
quant-ph/0312067.

[8] A. Y. Kitaev, A. H. Shen and M. N. Vyalyi. Classical and Quantum
Computation, American Mathematical Society, 2002.

[9] E. H. Knill. Conventions for Quantum Pseudocode, unpublished, LANL report
LAUR-96-2724

[10] D. W. Leung. Quantum computation by measurements, arXiv, quant-
ph/0310189, 2003.

[11] A. Muthukrishnan and C. R. Stroud. Multi-valued logic gates for quantum
computation, arXiv, quant-ph/0002033, 2000.

[12] M. A. Nielsen. Universal quantum computation using only projective
measurement, quantum memory, and preparation of the 0 state, arXiv, quant-
ph/0108020, 2001.

[13] C. M. Papadimitriou. Computational Complexity, Addisson-Wesley Publishing
Compagny, 1994.

[14] S. Perdrix and Ph. Jorrand. Measurement-Based Quantum Turing Machines
and their Universality, arXiv, quant-ph/0404146, 2004.

[15] S. Perdrix. State Transfer instead of Teleportation in Measurement-based
Quantum Computation, arXiv, quant-ph/0402204, 2004.

[16] R. Raussendorf, D. E. Browne and H. J. Briegel. Measurement-based quantum
computation with cluster states, arXiv, quant-ph/0301052, 2003.

[17] P. Selinger. Towards a quantum programming language. To appear in
Mathematical Structures in Computer Science, 2003.

[18] J. Watrous, Succinct quantum proofs for properties of finite groups, Proc. 41st
Annual Symposium on Foundation of Computer Science, pp. 537-546, 2000.

[19] A. C. Yao, Quantum circuit complexity, Proc. 34th IEEE Symposium on
Foundation of Computer Science, pp. 352-361, 1993.

94

DCM 2005 Preliminary Version

A Calculus for Reconfiguration
(Extended abstract)

Sonia Fagorzi 2 and Elena Zucca 3

DISI
University of Genova

Genova, Italy

Abstract

We present a simple calculus, called R-calculus (for “reconfiguration”), intended
to provide a kernel model for a computational paradigm in which standard execu-
tion (that is, execution of a single computation described by a fragment of code)
can be interleaved with operations at the meta-level which can manipulate in var-
ious ways the context in which this computation takes place. Formally, this is
achieved by introducing as basic terms of the calculus ”configurations”, which are,
roughly speaking, pairs consisting of an (open, mutually recursive) collection of
named components and a term representing a “program” running in the context of
these components. The R-calculus has been originally developed as a formal model
for programming-in-the large, where computations correspond to applications run-
ning in some context of software components, and operations at the meta-level
correspond to the possibility of dynamically loading, updating or in general ma-
nipulating these software components without stopping the application. However,
the calculus can also be seen as useful for programming-in-the-small issues, because
configurations combine the features of lambda-abstractions (first-class functions),
records, environments with mutually recursive definitions, and modules.

We state confluence of the calculus and define a call-by-need strategy which
leads to a generalization, including reconfiguration features, of call-by-need lambda-
calculi.

Key words: Module calculi, call-by-need strategy.

1 Partially supported by APPSEM II - Thematic network IST-2001-38957, and MIUR EOS
- Extensible Object Systems.
2 Email: fagorzi@disi.unige.it
3 Email: zucca@disi.unige.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Fagorzi and Zucca

Introduction

In the last years considerable effort has been invested in developing kernel
module/fragment calculi [5,13,12,6,11] providing foundations for manipulation
and combination of software components. However, these calculi are based on
a static view of software composition, in the sense that open code fragments
can be flexibly combined together, but before actually starting execution of a
computation we must have obtained a fully reduced and closed piece of code.
In module calculi this is formally reflected by the fact that selection, denoted
e.X, where e is a module expression and X is the name of a module component,
can only be performed when e is a basic module (no module operators remain
to be reduced) and, moreover, there are no components which still need to be
imported.

However, modern programming environments increasingly include dynamic
reconfiguration features, in the sense that interleaving is allowed between re-
configuration steps and standard execution steps. Examples of reconfiguration
features are dynamic loading as in Java and C#, where single code fragments
are dynamically linked to an already executing program, dynamic rebinding
[9], that is, the ability of changing the meaning of names used by an appli-
cation at execution time, marshaling/unmarshaling of values or computations
from a running application to another.

Here, we present a simple calculus, called R-calculus (for “reconfigura-
tion”), intended to provide a kernel model for a computational paradigm in
which standard execution (that is, execution of a single computation described
by a possibly open fragment of code) can be interleaved with operations at
the meta-level which can manipulate in various ways the context in which this
computation takes place.

Formally, this is achieved by defining as basic terms of the calculus “config-
urations”, which are, roughly speaking, pairs consisting of an (open, mutually
recursive) collection of named components (formally, a basic module) and a
term representing a “program” running in the context of these components.
Configurations can be combined by classical module/fragment operators (in
particular, we take as underlying module calculus CMS [5,6]) and, hence, re-
duction steps can be either execution steps of the program or steps which
perform module operators (reconfiguration steps).

As discussed above, the initial motivation for the R-calculus has been the
search for formal models for programming-in-the large. In this respect, the cal-
culus is part of a stream of work [1,3,2,4] on foundations for systems support-
ing reconfiguration features, in which the system structure can dynamically
change after starting execution of an application.

However, the calculus can also be seen as useful for programming-in-the-
small issues, because configurations combine the features of lambda-abstractions
(first-class functions), records, environments with mutually recursive defini-
tions, and modules.

96

Fagorzi and Zucca

e ∈ Exp ::= expression

| x variable

| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) basic module

| [ι; o; ρ | e] (dom(ι)∩dom(ρ)=∅) basic configuration

| e1 + e2 sum

|
σι |e|σo reduct

| freezeσe freeze

| e↓X run

| e↑ result

ι := xi
i∈I7→ Xi input assignment

o := Xi
i∈I7→ ei output assignment

ρ := xi
i∈I7→ ei local assignment

σ := Xi
i∈I7→ Yi, Yj

j∈J renaming

Fig. 1. Syntax

In this extended abstract, we focus on this aspect. In the first section, we
present the R-calculus as a pure calculus (no reduction strategy) and state
its confluence. Then, we outline a call-by-need strategy which should lead to
a generalization, including reconfiguration features, of call-by-need lambda-
calculi as in [8]. This second part will be worked out in a forthcoming full
version of this paper, which will also include a more extended investigation
on different strategies for the calculus, and on how they can be used to en-
code/generalize other primitive calculi, such as lambda calculi and module
calculi.

1 The R-calculus

In this section we provide an introduction to the R-calculus by examples,
which is organized as follows: first, we illustrate the module fragment of the
calculus, which is a variant of (mixin) module calculi such as [6,13]; then we
introduce configurations and illustrate the interleaving of program execution
and reconfiguration; finally, we discuss higher-order features of the calculus,
showing how reconfiguration can take place at many levels. The formal syntax
and reduction rules are given in Fig.1 and Fig.2, respectively.

Module operators Terms of the calculus denote either modules (collections
of components which are either input or output or local) or configurations
(pairs consisting of a module and a program running in the context of the
components offered by the module). The subset of the calculus constituted by

97

Fagorzi and Zucca

terms denoting modules is a standard (mixin) module calculus. In particular,
basic modules and module operators are those of CMS [6]. In reduction rules,
we give somewhere a slightly different version w.r.t. those in [6], more suit-
able for our technical development; in particular, we relax the applicability of
reduct and freeze operators, and we include rules (m-subst) and (m-subst-
output) in the style of the m-calculus [13] (see explanations below).

Module expressions are constructed on top of basic modules by the three
operators of sum, reduct and freeze.

A basic module has form [ι; o; ρ] where: ι is a map from deferred vari-
ables into input names, o is a map from output names into expressions and
ρ is a map from local variables into expressions. Names X, Y, Z, . . . are used
to refer to a component from outside the module (hence they are used by
module operators), while variables x, y, z, . . . are used to refer to a component
from the inside. For instance, denoting by e[x1, . . . , xn] an expression possibly
containing x1, . . . , xn as free variables, the expression

e0
∆
= [x 7→ X, z 7→ Z; Y 7→ e1[x, z, y]; y 7→ e2[x, z, y]]

is a basic module with two input, one output and one local component. Local
components can be mutually recursive.

The sum operator allows to combine two modules by performing the union of
input components and the disjoint union of output and local components (see
rule (m-sum)). Input components with the same name in the two modules
are shared in the resulting module, while conflicts among deferred or local
variables are solved by α-renaming. For instance, since the sets of output
names are disjoint, we can perform the sum of the basic module e0 above with

e5
∆= [y 7→ Y, w 7→ Z; X 7→ e3[y, w, x]; x 7→ e4[y, w, x]]

We obtain the following basic module, that we call e6:

[x 7→ X, z 7→ Z, y′ 7→ Y, w 7→ Z; Y 7→ e1[x, z, y], X 7→ e3[y′, w, x′]; y 7→ e2[x, z, y], x′ 7→ e4[y′, w, x′]]
where the input name Z is shared by the two variables z and w, while variables
y and x in e5 are α-renamed into y′ and x′, respectively, since they conflict
with those in e0.

The reduct operator allows to perform a renaming of component names,
where input and output names are renamed independently (see rule (m-
reduct)). The input renaming is a map whose domain and codomain are
old and new input names, respectively, whereas the output renaming is a map
whose domain and codomain are new and old output names, respectively. For
instance,

X1 7→X,X2 7→X, 7→W |[x1 7→ X1, x2 7→ X2, x3 7→ X3; Y 7→ e1, Z 7→ e2; x 7→ e3]|Y1 7→Y,Y2 7→Y

reduces to:

[x1 7→ X, x2 7→ X, x3 7→ X3, w 7→ W ; Y1 7→ e1, Y2 7→ e1; x 7→ e3].
A non-injective input renaming allows merging two input names (like X1

and X2 into X in the example), whereas a non-surjective one is used for adding
dummy input names (W in the example), which are bound to fresh variables

98

Fagorzi and Zucca

One hole contexts and contextual closure

E ::= 2 | [ι; O; ρ] | [ι; o; L] | [ι; O; ρ | e] | [ι; o; L | e] | [ι; o; ρ | E]

| E + e | e + E |
σι |E |σo | freezeσE | E ↓X | E ↑

R ::= 2 | R+ e |
σι |R|σo | freezeσR

O ::= X 7→ E , o

L ::= x 7→ E , ρ

v ∈ Val ::= [ι; o; ρ] | [ι; o; ρ | v]

(E)
e > e′

E [e] > E [e′]

Module simplification

(m-sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2] > [ι1, ι2; o1, o2; ρ1, ρ2]

dom(ι1, ρ1) ∩ FV([ι2; o2; ρ2]) = ∅

dom(ι2, ρ2) ∩ FV([ι1; o1; ρ1]) = ∅

(m-reduct)

σι |[ι1, ι2; o; ρ]|σo > [σι ◦ ι1, ι2; o ◦ σo; ρ]
cod(ι2) ∩ dom(σι) = ∅

(m-freeze)
freezeσ

[
xi

i∈I7→ Xi, ι; o; ρ
]

>
[
ι; o; ρ, xi

i∈I7→ o(σ(Xi))
] cod(ι) ∩ dom(σ) = ∅

(m-subst)
[ι; o; x1 7→ E [x2] , ρ] > [ι; o; x1 7→ E {ρ(x2)} , ρ]

x2 6∈ HB (E)

x2 ∈ dom(ρ)

x2 6 ∗
ι,o,ρ

> x1

(m-subst-output)
[ι; X 7→ E [x] , o; x 7→ e, ρ] > [ι; X 7→ E {e} , o; x 7→ e, ρ]

x 6∈ HB (E)

Reconfiguration and substitution

(reconf/subst)
R[ι; o; ρ]

α
> R′[ι′; o′; ρ′]

R[ι; o; ρ | e] > R′[ι′; o′; ρ′ | α (e)]

(subst-prg)
[ι; o; ρ | E [x]] > [ι; o; ρ | E {ρ(x)}]

x 6∈ HB (E)

x ∈ dom(ρ)
Run and result

(run)
[ι; o; ρ]↓X > [ι; o; ρ | o(X)]

(res)
(R[ι; o; ρ | e])↑ > e

FV(e) ∩ dom(ι, ρ) = ∅

Dependency relation on module variables
Given ι, o and ρ, x

∗
ι,o,ρ

> y, meaning “x depends on y through ι, o and ρ”, is the

least transitive and reflexive relation on dom(ι, ρ) induced by:

x1
∗

ι,o,ρ
> x2

x2 ∈ FV(ρ(x1))
x1

∗
ι,o,ρ

> x2

x1 ∈ dom(ι) ∧ x2 ∈ FV(o)

We write x2 6 ∗
ι,o,ρ

> x1 if x2
∗

ι,o,ρ
> x1 is not derivable.

Fig. 2. R-calculus reduction rules

99

Fagorzi and Zucca

(w in the example). A non-injective output renaming allows duplications of
definitions (in the example, the definition of Y is used for both Y1 and Y2),
whereas a non-surjective one is used for deleting output components (in the
example Z).

The freeze operator allows linking of input and output names inside a
module (see rule (m-freeze)). That is, this operator resolves input names, so
that input components are transformed into local. For instance, the expression
freezeX 7→X,Z 7→Y (e6) reduces to:

[y′ 7→ Y ;

Y 7→ e1[x, z, y], X 7→ e3[y′, w, x′];

y 7→ e2[x, z, y], x′ 7→ e4[y′, w, x′], x 7→ e3[y′, w, x′], z 7→ e1[x, z, y], w 7→ e1[x, z, y]].

Rules (m-subst) and (m-subst-output) allow to substitute local vari-
ables with their definitions in module components . In rule (m-subst) the

side-condition x2 6 ∗
ι,o,ρ

> x1 means that the (local) component x2 does not de-

pend on the (local) component x1. Without this condition, the R-calculus
would not be confluent (see [7,13]).

Configurations A basic configuration is a pair [ι; o; ρ | e], consisting of
a basic module and an expression, called program. A basic configuration can
evolve by reduction steps of the program; moreover, local variables can be re-
placed by their defining expressions (see rule (subst-prg)). This is illustrated
by the reduction sequence below:

[; X 7→ x; y 7→ 1, x 7→ 2 + y | x] > [; X 7→ x; y 7→ 1, x 7→ 2 + y | 2 + y] >

[; X 7→ x; y 7→ 1, x 7→ 2 + y | 2 + 1] > [; X 7→ x; y 7→ 1, x 7→ 2 + y | 3],
Moreover, module operators described in previous section can be applied

to configurations as well, and act as reconfiguration operators, in the sense
that they allow to modify the context of a program during its execution.
This is performed by rule (reconf/subst), which also allows local variable
substitution inside configuration components. Note that in the premise of
rule (reconf/subst) the reduction step at the module level is labelled by α.
This is just to keep track and propagate to the program possible α-renaming
happened during the module evaluation step. In this way, a needed input
component can become available, as shown below:

freezeZ 7→Z [z 7→ Z; ; y 7→ 1, x 7→ 2 + z | x] + [; Z 7→ 3;] >

freezeZ 7→Z [z 7→ Z; ; y 7→ 1, x 7→ 2 + z | 2 + z] + [; Z 7→ 3;] >

freezeZ 7→Z [Z 7→ z; Z 7→ 3; y 7→ 1, x 7→ 2 + z | 2 + z] >

[; Z 7→ 3; y 7→ 1, x 7→ 2 + z, z 7→ 3 | 2 + z] >

[; Z 7→ 3; y 7→ 1, x 7→ 2 + z, z 7→ 3 | 2 + 3] >

[; Z 7→ 3; y 7→ 1, x 7→ 2 + z, z 7→ 3 | 5].
Higher-order features and configuration levels Since a program can be in

turn a configuration, both local variable resolution steps and reconfiguration
steps can take place at an outer configuration level (the innermost where the
needed variable is bound). For instance, the expression

100

Fagorzi and Zucca

freezeZ 7→Z([z 7→ Z; ; y 7→ 2 | [; X 7→ x; x 7→ y + z | x]] + [; Z 7→ 3;])
can reduce as follows:

> freezeZ 7→Z([z 7→ Z; ; y 7→ 2 | [; X 7→ x; x 7→ y + z | y + z]] + [; Z 7→ 3;])
>

freezeZ 7→Z([z 7→ Z; ; y 7→ 2 | [; X 7→ x; x 7→ y + z | y + z]] + [; Z 7→ 3;]) >

freezeZ 7→Z [z 7→ Z; Z 7→ 3; y 7→ 2 | [; X 7→ x; x 7→ 2 + z | 2 + z]] >

[; Z 7→ 3; y 7→ 2, z 7→ 3 | [; X 7→ x; x 7→ 2 + z | 2 + z]] > . . . >

[; Z 7→ 3; y 7→ 2, z 7→ 3 | [; X 7→ x; x 7→ 2 + z | 5]].
The run operator allows to obtain a basic configuration from a (basic)

module, by starting the execution of one of its output components (see rule
(run)). For instance, the expression [; X 7→ x; y 7→ 2, x 7→ 2 + y] ↓X reduces
in one step to the basic configuration seen before.

The result operator allows to extract the program from a configuration
(see rule (res)). Formally, a configuration level is modeled by an expression
of the form R[[ι; o; ρ | e]] where R is a context consisting only of reconfigura-
tion operators. The result operator can be safely applied only if the program
does not refer to any variable bound in the basic configuration of the con-
sidered configuration level. This condition prevents scope extrusion of vari-
ables, which would lead to dynamic errors. For instance, in the expression
(freezeZ 7→Z([z 7→ Z; ; | [; X 7→ x; x 7→ 2 + z | x]↑] + [; Z 7→ 3;]))↑, the innermost
result operator cannot be executed since the program still refers to the vari-
able x bound in the enclosing basic configuration. Hence, we first need to
resolve this variable, that is,

> (freezeZ 7→Z([z 7→ Z; ; | [; X 7→ x; x 7→ 2 + z | 2 + z]↑] + [; Z 7→ 3;]))↑.
At this point, we can either apply reconfiguration steps, or the innermost

result operator (indeed, the program does no longer refer to any variable bound
at this level). By choosing the latter reduction alternative, we obtain >

(freezeZ 7→Z [z 7→ Z; ; | 2 + z] + [; Z 7→ 3;])↑, which eventually reduces to 5.
The R-calculus enjoys the Church-Rosser property.

Theorem 1.1 (Church-Rosser) The R-calculus reduction relation >
is confluent.

2 A call-by-need strategy

The R-calculus can be equipped with different strategies, which can be used to
encode/generalize other primitive calculi, such as lambda calculi and module
calculi. In this extended abstract, we outline a call-by-need strategy which
should lead to a generalization, including reconfiguration features, of call-by-
need lambda-calculi as in [8].

Rule (E) now deals with (one hole) evaluation contexts rather than (ar-
bitrary) contexts. Contexts D[x, xn] are used to denote a set of declarations
s.t. evaluation of x transitively depends on evaluation of xn, as in [8]. Values
also contain a new constant •, which arises due to cycles. In particular, we

101

Fagorzi and Zucca

Evaluation contexts, values and answers

Eev ::= 2 | [ι; o; ρ | Eev] | [ι; o; D[x, xn] , xn 7→ Eev
n , ρ | Eev[x]] | Eev + e

| [ι, x 7→ X; o; ρ | Eev
1 [x]] + Eev

2 |
σι |Eev

|σo | freezeσEev | Eev ↓X | Eev ↑

D[x, xn] ::= x 7→ Eev[x1] , x1 7→ Eev
1 [x2] , . . . , xn−1 7→ Eev

n−1[xn]

v ∈ Val ::= [ι; o; ρ] | R[ι; o; ρ | v] | •

a ∈ Ans ::= v | (R[ι; o; ρ | a])↑

Reconfiguration and substitution

(reconf)
R[ι; o; ρ]

α
> R′[ι′; o′; ρ′]

R[ι; o; ρ | Eev[x]]
need

> R′[ι′; o′; ρ′ | α (Eev[x])]

x 6∈ HB (Eev)

x ∈ dom(ι)

(subst-prg)
[ι; o; ρ, x 7→ v | Eev[x]]

need
> [ι; o; ρ, x 7→ v | Eev {v}]

x 6∈ HB (Eev)

(subst)
[ι; o; D[x, xn] , xn 7→ v, ρ | Eev[x]]

need
> [ι; o; D[x, xn {v}] , xn 7→ v, ρ | Eev[x]]

x 6∈ HB (Eev)

Binding re-association

(assoc-input)
R[ι2; o2; ρ2]

α
> R′[ι′2; o′2; ρ′2]

[ι1; o1; ρ1, x 7→ (R[ι2; o2; ρ2 | a])↑| Eev[x]]
need

>

[ι1; o1; ρ1, x 7→ (R′[ι′2; o′2; ρ′2 | α (a)])↑| Eev[x]]

x 6∈ HB (Eev)

(FV(a) ∪ FV(ρ2)) ∩ dom(ι2) 6= ∅

(assoc)
[ι1; o1; ρ1, x 7→ (R[ι2; o2; ρ2 | a])↑| Eev[x]]

need
>

[ι1; o1; ρ1, x 7→ a, ρ2 | Eev[x]]

x 6∈ HB (Eev)

(FV(a) ∪ FV(ρ2)) ∩ dom(ι2) = ∅

dom(ρ2) ∩ (FV(o1) ∪ FV(ρ1)) = ∅

Lifting

(sum-lift)
[ι1; o1; ρ1 | Eev[x]]↑ + [ι2; o2; ρ2]

need
> [ι1; o1; ρ1 | Eev[x] + [ι2; o2; ρ2]]↑

x 6∈ HB (Eev)

x ∈ dom(ι1)

(reduct-lift)

σι |[ι; o; ρ | Eev[x]]↑|σo need
>

[
ι; o; ρ |

σι |Eev[x]|σo

]
↑

x 6∈ HB (Eev)

x ∈ dom(ι)

(freeze-lift)
freezeσ([ι; o; ρ | Eev[x]]↑)

need
> [ι; o; ρ | freezeσ(Eev[x])]↑

x 6∈ HB (Eev)

x ∈ dom(ι)

Fig. 3. Call-by-need reduction rules

102

Fagorzi and Zucca

consider a sequence of declarations of the shape D[x, x] to be equivalent to •.
Hence, • represents a program that provably diverges, as in [8].

Rules (m-sum), (m-reduct) and (m-freeze) are as in Fig.2 (hence are not
reported). We do not allow module component simplification, hence contexts
[ι; O; ρ] and [ι; o; L] are removed, and also rules (m-subst) and (m-subst-
out). Indeed, the intuition is that simplification of module components only
takes place when triggered by the executing program (see rule (subst) below).

In rule (reconf), reconfiguration now only takes place when the execution
of the program needs a deferred variable. Indeed, in this case reconfiguration
steps could possibly make the variable local. Note also that, since there are
no longer rules (m-subst) and (m-subst-out), this rule can only be applied
with a premise which is a step of application of a module operator, hence
only deals with reconfiguration steps. In rule (subst-prg), substitution of an
instance of a local variable x with its defining expression inside the program
now only takes place when the execution of the program needs this variable,
and the defining expression has already been reduced to a value. If this is
not the case, then the evaluation of the definition of x is triggered, which can
trigger, recursively, evaluation of other definitions, until a local variable xn

whose evaluation does not depend on any other is found (evaluation context
[ι; o; D[x, xn] , xn 7→ Eev

n , ρ | Eev[x]]). When the definition of a local variable
xn is reduced to a value, this value can be used to replace a needed reference
to xn in another definition (rule (subst)).

Rules (assoc-input) and (assoc) are new rules used in the call-by-need
strategy, inspired to the (assoc) rule in [8]. These rules are used when the
program needs a variable x whose definition is neither a value, nor an expres-
sion which can be further reduced, but an answer (roughly speaking, a values
containing free variables inserted in a context which can provide definitions
for these variables). In this case, a call-by-need strategy should avoid to eval-
uate these definitions if not necessary. If there are no references to deferred
variables (rule (assoc)), then it is possible to eliminate a reconfiguration level
and to rearrange local bindings. In the other case (rule (assoc-input)), it
is necessary to first perform reconfiguration steps until there are no longer
references to deferred variables.

Rules (sum-lift), (reduct-lift) and (freeze-lift) are also new rules used
in the call-by-need strategy, inspired to the (lift) rule in [8]. These rules are
used when the program needs a deferred variable x which cannot be provided
at the current configuration level, which is a basic configuration (hence, no
more reconfiguration steps can be performed), but could be possibly provided
after extracting the program by the outer configuration level. In this case, it
is possible to “move inside” the enclosing module operator.

Finally, rule (run) is like in the calculus, whereas rule (res) is removed
(replaced by the (assoc-input) and (assoc) rules).

We conjecture that the following properties of the call-by-need strategy
hold.

103

Fagorzi and Zucca

Theorem 2.1 (Soundness and completeness of
need

>)

If e
need

> e′, then e > ∗e′.

If e > ∗v, then there exists a such that e
need

> ∗a.

References

[1] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic linking. In ICTCS
2003, LNCS 2841, pages 284–301, 2003.

[2] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic reconfiguration
with low priority linking. Electonical Notes in Theoretical Computer Science,
2004. In WOOD’04: Workshop on Object-Oriented Developments. To appear.

[3] D. Ancona, S. Fagorzi, and E. Zucca. A calculus with lazy module operators. In
TCS 2004 (IFIP Int. Conf. on Theoretical Computer Science), pages 423–436.
Kluwer Academic Publishers, 2004.

[4] D. Ancona, S. Fagorzi, and E. Zucca. Mixin modules for dynamic rebinding.
In TGC 2005 -Symposium on Trustworthy Global Computing, LNCS. Springer,
April 2005. To appear.

[5] D. Ancona and E. Zucca. A primitive calculus for module systems. In PPDP’99,
LNCS 1702, pages 62–79. Springer, 1999.

[6] D. Ancona and E. Zucca. A calculus of module systems. Journ. of Functional
Programming, 12(2):91–132, 2002.

[7] Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion.
Information and Computation, 139(2):154–233, Dec. 1997.

[8] Z. M. Ariola and M.Felleisen. The call-by-need lambda calculus. Journ. of
Functional Programming, 7(3):265–301, 1997.

[9] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough. Dynamic
rebinding for marshalling and update, with destruct-time λ. In ICFP 2003,
pages 99–110. ACM Press, 2004.

[10] S. Fagorzi. Module Calculi for Dynamic Reconfiguration. PhD thesis,
Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova,
2005.

[11] T. Hirschowitz, X. Leroy, and J. B. Wells. Call-by-value mixin modules:
Reduction semantics, side effects, types. In ESOP 2003, LNCS 2986, pages
64–78. Springer, 2004.

[12] E. Machkasova and F.A. Turbak. A calculus for link-time compilation. In
ESOP 2000, LNCS 1782, pages 260–274. Springer, 2000.

[13] J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking
with first-class primitive modules. In ESOP 2000, LNCS 1782, pages 412–428.
Springer, 2000.

104

DCM 2005 Preliminary Version

Splitting Mobility and Communication in
Boxed Ambients

Pablo Garralda 1,2 Adriana Compagnoni 1,3

Computer Science Department
Stevens Institute of Technology

Hoboken, NJ - U.S.

Abstract

Stemming from our previous work on BACI, a boxed ambients calculus with
communication interfaces, we define a new calculus that further enhances commu-
nication mechanisms and mobility control by introducing multiple communication
ports, access control lists, and port hiding.

The development of the calculus is mainly focused on three objectives: separation
of concerns between mobility and communication, fine-grained controls, and locality.

Communication primitives use ports to establish communication channels be-
tween ambients, while ambient names are only used for mobility. Port names are
used in communications with children ambients as well as in communications with
parent ambients, providing extra information to the communicating parties. The
introduction of multiple ports allows for extra control in communications and a di-
rect implementation of dedicated channels such as those used for ftp, ssh, or other
services.

In order to control mobility, the calculus includes co-capabilities à la Safe Ambi-
ents, but with the addition of access control lists. These lists contain the names of
the ambients that are allowed to enter or exit the ambient with that co-capability.

The resulting calculus not only provides more flexibility and expressiveness than
BACI, but also enables simpler implementations using more powerful constructs
for communication and mobility. We establish the basic meta-theory of the calculus
by proving a subject reduction result.

Key words: AMBIENTS, MOBILITY, COMPUTING MODELS

1 This research was supported in part by the National Science Foundation project No. CCR-
0220286 ITR: Secure Electronic Transactions. The funding bodies are not responsible for
any use that might be made of the results presented here.
2 Email: pablo@cs.stevens.edu
3 Email: abc@cs.stevens.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Garralda, Compagnoni

1 Introduction

In Cardelli and Gordon’s Mobile Ambients (MA)[6], ambients represent nested
computational environments containing data and live computation. Ambients
are capable of moving under the influence of the process they enclose and can
dissolve their perimeter with an open operation. Mobile Ambients provide a
direct characterization of computational processes as well as computational
devices.

Boxed Ambients (BA) [3] evolved from MA, by removing the ability of an
ambient of dissolving its boundary. In BA, an ambient is a “box” that cannot
be opened. This notion of closed ambient provides complete encapsulation
of the agents they contain. To enable the communication lost by disabling
the open operation, ambients are equipped with communication channels to
exchange information with adjacent ambients (parent and children ambients).

Both in MA and BA, ambient mobility is commanded by processes inside
the ambient. The commands for mobility are called capabilities. The capa-
bilities tell an ambient to open or move inside or outside another ambient.
Unrestricted mobility, however, can lead to undesired interferences between
two concurrent processes. Addressing this concern, control over capabilities
was first introduced in Safe Ambients [10] and later used in New Boxed Am-
bients (NBA) [4] in the form of co-capabilities. A capability can be exercised
only in the presence of a matching co-capability. Hence, in order to enter
an ambient using the in capability, that ambient must contain a matching
in co-capability authorizing that access; similarly for exiting using the out
capability.

Bonelli et al. [1] introduced the notion of local views in the calculus of
Boxed Ambients with Communication Interfaces (BACI). In this calculus,
each ambient has an associated communication port and a local view. The
communication port is used for sending and receiving messages to and from
other ambients, and the local view represents the communication types that
are used by the processes enclosed inside the ambient. BACI is flexible enough
to allow an ambient to communicate with different parents using different
types. However, this flexibility came with the price of a rather complex syntax
and some run-time type checking required to guarantee type safety.

In this paper, we present an enhanced and simplified version of BACI
called BACIv2. In this version, we share the same goals present in the original
version: to stress the separation between communication and mobility and to
reduce the amount of global information in the calculus. However, this time,
we achieve a better trade-off between locality, expressiveness and the calculus
complexity.

In BACIv2, processes inside an ambient can use multiple ports –each
one with its own communication type– to communicate with other neighbor-
ing processes within or outside the ambient. This allows, for instance, the
straightforward specification of a host exposing several services like ssh or

106

Garralda, Compagnoni

ftp, using a different port for each service.

Notice that ports can be encoded using dedicated ambients. However,
having multiple ports as primitives has the advantage of not requiring the
co-capabilities necessary for the mobility of such ambients.

Another application of multiple ports is the implementation of data struc-
tures such as a stack. We can encapsulate the implementation of the stack
with a single ambient, using different ports for each of the stack operations as
depicted in Figure 1(a).

user ambient

stack

isEmptypop

push

(a) Stack ambient using multiple ports

auth perimeter

network

access granted

AUTH

pwd

system

agent

(b) Dynamic ambient access control

Fig. 1. Some examples in BACIv2.

BACIv2 also enhances the mobility control by using fine-grained co-
capabilities, where each co-capabilities contains an access control list to re-
strict access to those ambients in the list, enabling dynamic access control.
Access control lists can be used to implement access control using passwords
similar to the mechanisms found in NBA [5].

Figure 1(b) depicts an ambient that, in order to enter a restricted ambient,
needs to authenticate itself by sending the password to an authenticator pro-
cess located outside the restricted ambient. Next, the authenticator process
validates the password and instructs the restricted ambient to grant access to
the validated ambient. Finally, the restricted ambient allows the access of the
incoming ambient, and the operation is completed.

BACIv2 also introduces port name restriction. This restriction is used to
create truly private communication channels, preventing undesired communi-
cation interferences. Moreover, new ports can be created dynamically using a
special primitive called connect. connect binds two different ports: one from
the parent ambient and one from a child ambient, using a new (private) port
name. This construct creates new communication channels without requiring
any previous knowledge of the parent or child ambient names or the ports
they use.

107

Garralda, Compagnoni

Messages:
M,N ::= α name

| C capability
Capabilities:
C,D ::= in α enter

| outTo α exit
| C.D path
| x variable

Prefixes:
π ::= C capabilities

| (x̃ : ϕ̃)η receive
| 〈M̃〉η send
| in{χ} co-enter
| outTo{χ} co-exit
| connect↓(c : ϕ̃) connect down
| connect↑(c : ϕ̃) connect up

Access control list:
χ ::= any unrestricted

| α̃ list of names
Ports:

c, u, v constant
Basic types

ϕ ::= amb ambient
| cap capability

Processes:
P,Q ::= 0 nil process

| P | Q composition
| !π.P replication
| (ννν n : amb)P restriction
| (νννp c : ϕ̃)P port restr.
| π.P prefixing
| α[[[P]]] ambient
| [M = N]{P}{Q} equality

Names:
α, β ::= n constant

| x variable
Locations:

η ::= ↑c upward
| ↓c downward
| ?c local

Typing environments
Σ ::= ∅ empty

| Σ, x : ϕ variable
Process interface type

Γ ::= ∅ empty
| Γ, τ interface

Communication types
τ ::= c : ϕ̃ typed port

Table 1
Syntax of BACIv2

2 BACIv2

2.1 Syntax and Semantics

The complete syntax of the calculus is summarized in Table 1. It includes two
main syntactic categories: processes and messages. Messages, ranged over by
M and N , include ambient names and capabilities. Ambient names, ranged
over by α and β, can be either constant ambient names or name variables.
Capabilities, ranged over by C and D, can be either the capabilities for en-
tering and exiting an ambient, variables or a “path” which is a sequence of
capabilities describing a mobility path. In addition to the sets of variables
and ambient names, we also have the set of ports used for communication.

Processes, ranged over by P , Q, R, and S, are built from the construc-
tors of inactivity, showing the end of a process; parallel composition of two
processes; replication, used for recursion; ambient and port name restriction;
prefixing, where π is an operation that is followed by a continuation process
P ; a named ambient encapsulating a process; and, finally, message equality
testing for branching to either P or Q depending on whether M is equal to N
or not.

The syntax for name and port restriction includes the name of the hidden

108

Garralda, Compagnoni

ambient or port paired with the appropriate type. This is done in order to
unify the syntax for the structural congruence rules (omitted here).

Process prefixes can be divided into four different groups: capabilities,
message send and receive, restricted co-capabilities and connects. Capabilities
command an ambient to move inside or outside another ambient. Send and
receive exchange messages between processes possibly at different locations. A
location is merely a port located in the parent or a child ambient or locally in
the same ambient. Co-capabilities allow the entrance or exit of a particular set
of ambients depending on whether the ambient name is included in its access
control list. Finally, connect can be used to dynamically create a new port (of
type ϕ̃) between child and parent ambients.

Capabilities in BACIv2 are slightly different from the ones in Safe Ambi-
ents or NBA. Here, co-capabilities are not included as capabilities. 4 Moreover,
the out(To) capability refers to the target ambient instead of referring to the
ambient that is being exited. This implies that the moving ambient must
know its destination. However, after executing outTo, a process can be cer-
tain of its current location. This is more difficult to assert with the standard
out capability found in other ambient calculi.

Send and receive use locations to address a particular port in a parent or
a child. In order to establish a communication, both send and receive must
have matching port names.

This can be seen in the input reduction rule:

(input ↓ -↑)

(x̃ : ϕ̃)↓c.P
∣∣ n[[[〈M̃〉↑c.Q | R]]] −→ P{x̃ := M̃}

∣∣ n[[[Q | R]]]

where ↓c matches ↑c.

Only capabilities and ambient names can be sent as messages. However,
the syntax can be easily extended to allow other kinds of messages, such as
integers or booleans.

Co-capabilities in{} and outTo{} have a list of ambients that are allowed
to enter (or exit) using that co-capability. Additionally, the label any can be
used to denote unrestricted access. Here is the reduction rule for exit:

(exit)

k[[[m[[[n[[[outTo k.P1 | P2]]]
∣∣ Q1]]] outTo{χ}.Q2 | Q3]]] −→

k[[[m[[[Q1]]]
∣∣n[[[P1 | P2]]]

∣∣ Q2 | Q3]]]

where χ is {ñ1, n, ñ2} or any

Notice that the outTo refers to the grand-parent ambient instead of the
parent ambient. In this way, the moving ambient can specify the target am-
bient.

4 This means that co-capabilities cannot appear as messages so, they cannot be sent or
received.

109

Garralda, Compagnoni

Finally, the connect prefix allows a process to create a new private channel
shared with another process located in the parent or a child ambient.

(connect)

connect↓(u : ϕ̃).P
∣∣ n[[[connect↑(v : ϕ̃).Q | R]]] −→

(νννp c : ϕ̃)(P{u := c}
∣∣ n[[[Q{v := c} | R]]])

where c is a fresh port name.

The complete set of reduction rules (omitted here due to lack of space)
include standard stuctural rules as well as rules for (output) and (enter)
which are analogous to the ones presented above.

3 Typing Judgments

Typing environments are defined by the following grammar.

Σ ::= ∅ empty environment
| Σ, x : ϕ extension

Typing environments are assumed to assign a unique type to each name in its
domain.

There exist two different typing judgments, one for messages and one for
processes:

• Σ ` M : ϕ, read “M is a well-formed message of type ϕ in Σ”, and

• Σ � P : Γ, read “P is a well-formed process of type is Γ in Σ”.

In contrast to other systems, there is no communication type associated
with an ambient name, instead an ambient name has the constant type amb.

In the judgment Σ � P : Γ, the process interface Γ exhibits the commu-
nication types used by P . Γ assigns communication types to each free port c
used in P . Ports hidden using port restriction (νννp c : ϕ̃) do not appear in Γ,
since their type is declared in the restriction operation. This fact is reflected
in the corresponding typing rule:

(proc-p-res) Σ � P : Γ, c : ϕ̃

Σ � (νννp c : ϕ̃)P : Γ

Similarly, the connect operation also abstracts port names, hiding them
from the resulting Γ. The complete set of typing rules were omitted.

The type system guarantees that communication inside ambients and across
ambient boundaries never leads to type mismatches. This is formalized as the
Subject Reduction theorem:

Theorem 3.1 (Subject Reduction)
If Σ � P : Γ and P −→ Q, then Σ � Q : Γ.

Proof. By induction on the derivation of P −→ Q. 2

110

Garralda, Compagnoni

4 Examples

4.1 Stack

In this example, we model a stack for storing names using multiple ports.
We consider three primitive operations applied to stacks: push, pop, isEmpty.
Push takes an element and inserts it on the top of the stack; pop, on the other
hand, removes the element on top and returns it as a result of the operation.
Finally, isEmpty is used to query the stack whether it is empty or not.

For the implementation of these operations we use different ports. In fact,
we use two ports per operation: one for receiving the request and the other
to deliver the response (possibly excepting the push operation that does not
require a response). In general, we name each port using the name of the
operation along with a subindex indicating whether it is receiving a request
or submitting a response.

The stack is represented by the following ambient.

STACK = stack[[[INTERNALS | !PUSH | !POP | !ISEMPTY]]]

The processes inside the stack can be divided into four parts: INTERNALS
which keeps the internal state and manages some internal operations, and the
processes that manage each operation.

The implementation uses a linked list of nodes. Each node is an ambient
containing a “stacked” value. A local port called top is used as a variable to
store the name of the node that holds the top value of the stack.

The INTERNALS part holds the current state of the stack. Initially, the
stack is empty, so INTERNALS only contains the initial state: INITSTATE .

INITSTATE 5 = 〈empty〉?top

We use the name empty to denote that the stack is empty; therefore, empty
is “stored” as the top.

In order to manipulate this internal state, we introduce two syntactic def-
initions: gettop and settop.

gettop(x).P = (x)?top.(P | 〈x〉?top)

settop(n).P = P | (x)?top.〈n〉?top

Gettop retrieves the name of the node ambient that holds the top value
of the stack and binds it to a variable. On the other hand, settop takes an
ambient name (i.e. a node name) as an argument and sets that name to be
the top of the stack.

Using these macros, we can define the ISEMPTY operation:

ISEMPTY 6 =

5 In general, we omit the nil process at the end of a process expression for sake of readability.
6 We use a “ ” instead of a variable name to denote that the value received on this port is
a dummy value just used to establish the communication.

111

Garralda, Compagnoni

()↑isEmptyreq .gettop(t).[t = empty]{〈true〉↑isEmptyres}{〈false〉↑isEmptyres}
First, a request is received on isEmptyreq port. Then, after retrieving the

top name, the process checks if it is equal to empty or not, returning the
names true or false over the port isEmptyres.

The PUSH operation receives a value v over the port pushreq and creates
a new node with that value.

PUSH = (v)↑pushreq .NEWNODE (v)

The newly created node stores the value at the top of the stack and records
the name of the old top of the stack as the next node in the linked list.

NEWNODE (x) =

(ννν node : amb)gettop(t).(node[[[NODE INT (x, t)]]] | settop(node))

Internally, each node has a process that is ready to release the stored value
after it is triggered by the entrance of a special messenger ambient called
popper. As its name suggests, the sole purpose of the popper ambient is as a
signal to the node that is being popped from the stack.

NODE INT (v, t) = in{popper}.〈(v, t)〉↑release

After this signal, the node retrieves the stored value and also the name of the
following node in the stack. This feature of the nodes is used by the POP
operation. After receiving a request via the popreq port, the POP operation
sends a messenger ambient to the top node to start the removing process.

POP = ()↑popreq .gettop(t).(popper[[[in t]]] | (v, t′)↓release.settop(t′).〈v〉↑popres)

Simultaneously, a parallel process waits for the response from the top node
through the release port. After that response is received, the next node in
the stack is placed at the top of the stack; finally, the value that was on top
is retrieved from the stack ambient using the popres port.

4.2 Authentication Using Passwords

This example shows a simplified implementation of a mechanism similar to
the capabilities in NBA [5] that use passwords as an access control to enter or
exit into other ambients. The example corresponds to the situation depicted
in Figure 1(b).

An agent request access to a system sys by sending its credentials to
AUTH , the process in charge of the authentication procedure.

agent[[[in{sys with passwd}.P]]] | AUTH | sys[[[ACCESS | SYS]]]

AUTH is continuously listening for incoming requests. On each request,
it tests the given password, either granting the requested access or informing
that the access was denied.

AUTH = !(m, mpwd)
↓authreq .[mpwd = goodpwd]{GRANT}{DENY }

112

Garralda, Compagnoni

GRANT = 〈granted〉↓authres .〈m〉↓grant

DENY = 〈denied〉↓authres

The agent uses the macro in{n with passwd} to request access.

in {n with passwd}.P = REQUEST agent(sys, passwd) | ()?go.in n.P)

The REQUEST process continuously tries to get access by sending its
credentials and waiting for a response each time. Therefore, the continuation
process P is blocked until the access is granted.

REQUESTm(n, pwd) = (νννp do auth : amb)(

〈try〉?do auth | !()?do auth.〈m, pwd〉↑authreq .(res)↑authres [res =
granted]{〈ok〉?go}{〈retry〉?do auth})

where m is the name of the ambient requesting permission to enter the ambient
n.

Finally, after AUTH authorizes the access, it communicates with the sys-
tem to allow the access of the authenticated process via a port named grant.

ACCESS = !(a)↑grant.in{a}

5 Summary and Conclusions

Continuing our earlier work on BACI[1], the calculus presented here aims
at further decoupling communication from mobility. This is achieved by the
introduction of multiple ports that are exclusively used for communication.
The addition of access control lists to co-capabilities enables better mobil-
ity control. These fine-grained co-capabilities are useful in encoding specific
mechanisms that can be used transparently, without any side-effects on the
ambient mobility control. Multiple ports reduce the need of complex encod-
ings to implement several communication channels, rendering specifications
closer to the reality being modeled. However, excessive use of ports could be
reduced by extending the calculus with session types [9] for ports. A type
system including session types would enforce stronger type safety guarantees.
Moreover, the introduction of co-capabilities that also bind the name of the
entering ambient, similar to NBA [5] co-capabilities, could give each ambient
additional control over its child ambients.

Acknowledgement

We are grateful to Mariangiola Dezani-Ciancaglini for enlightening discussions
and to Elsa Gunter, Joëlle Despeyroux, Eduardo Bonelli, Ricardo Medel, and
Alejandro Russo for many useful comments and constructive criticism.

113

Garralda, Compagnoni

References

[1] Eduardo Bonelli, Adriana B. Compagnoni, Mariangiola Dezani-Ciancaglini, and
Pablo Garralda. Boxed ambients with communication interfaces. In Jiŕı Fiala,
Václav Koubek, and Jan Kratochv́ıl, editors, MFCS, volume 3153 of Lecture
Notes in Computer Science, pages 119–148. Springer, 2004.

[2] M. Bugliesi and G. Castagna. Secure Safe Ambients. In POPL’01, ACM
Symposium on Principles of Programming Languages, pages 222–235. ACM
Press, 2001.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Access Control for Mobile Agents: the
Calculus of Boxed Ambients. ACM Transactions on Programming Languages
and Systems (TOPLAS), 26(1):57 – 124, Jan 2004.

[4] Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sassone.
Communication and Mobility Control in Boxed Ambients. To appear in
Information and Computation. Extended and revised version of M. Bugliesi, S.
Crafa, M. Merro, and V. Sassone. Communication Interference in Mobile Boxed
Ambients. In FSTTCS’02, volume 2556 of LNCS, pages 71-84. Springer-Verlag,
2002.

[5] Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sassone.
Communication interference in mobile boxed ambients. In Proceedings of
the 22nd Conference on Foundations of Software Technology and Theoretical
Computer Science, FST&TCS 2002, volume 2556 of LNCS, pages 71–84.
Springer, 2002.

[6] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Theoretical Computer
Science, 240(1):177–213, 2000. Special Issue on Coordination, Daniel Le
Métayer Editor.

[7] Giuseppe Castagna and Jan Vitek. Seal: A Framework for Secure Mobile
Computations. In Henri E. Bal, Boumediene Belkhouche, and Luca Cardelli,
editors, Internet Programming Languages, volume 1686 of Lecture Notes in
Computer Science, pages 47–77, Berlin, 1999. Springer-Verlag.

[8] Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Ivano
Salvo. M3: Mobility Types for Mobile Processes in Mobile Ambients. In James
Harland, editor, CATS’03, volume 78 of ENTCS. Elsevier, 2003.

[9] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives
and type disciplines for structured communication-based programming. In
ESOP’98, volume 1381 of Lecture Notes in Computer Science, pages 22–138.
Springer-Verlag, 1998.

[10] Francesca Levi and Davide Sangiorgi. Controlling Interference in Ambients.
Transactions on Programming Languages and Systems, 25(1):1–69, 2003.

[11] Andrew Phillips, Nobuko Yoshida, and Susan Eisenbach. A distributed abstract
machine for boxed ambient calculi. In ESOP’04, LNCS. Springer, April 2004.

114

DCM 2005 Preliminary Version

Abstract Effective Models

Udi Boker 1,2

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

Nachum Dershowitz 3

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

Abstract

We modify Gurevich’s notion of abstract machine so as to encompass computational
models, that is, sets of machines that share the same domain. We also add an effec-
tiveness requirement. The resultant class of “Effective Models” includes all known
Turing-complete state-transition models, operating over any countable domain.

Key words: Computational models, Turing machines, ASM,
Abstract State Machines, Effectiveness

1 Sequential Procedures

We first define “sequential procedures”, along the lines of the “sequential
algorithms” of [3]. These are abstract state transition systems, whose states
are algebras.

Definition 1.1 [States]

• A state is a structure (algebra) s over a (finite-arity) vocabulary F , that is,
a domain (nonempty set of elements) D together with interpretations [[f]]s
over D of the function names f ∈ F .

• A location of vocabulary F over a domain D is a pair, denoted f(a), where
f is a k-ary function name in F and a ∈ Dk.

1 This work was carried out in partial fulfillment of the requirements for the Ph.D. degree
of the first author.
2 Email: udiboker@tau.ac.il
3 Email: nachumd@tau.ac.il

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Boker and Dershowitz

• The value of a location f(a) in a state s, denoted [[f(a)]]s, is the domain
element [[f]]s(a).

• We sometimes use a term f(t1, . . . , tk) to refer to the location f([[t1]]s, . . . , [[tk]]s).

• Two states s and s′ over vocabulary F with the same domain coincide over
a set T of F -terms if [[t]]s = [[t]]s′ for all terms t ∈ T .

• An update of location l over domain D is a pair, denoted l := v, where
v ∈ D.

• The modification of a state s into another state s′ over the same vocabulary
and domain is ∆(s, s′) = {l := v′ | [[l]]s 6= [[l]]s′ = v′}.

• A mapping ρ(s) of state s over vocabulary F and domain D via injection
ρ : D → D′ is a state s′ of vocabulary F over D′, such that ρ([[f(a)]]s) =
[[f(ρ(a))]]s′ for every location f(a) of s.

• Two states s and s′ over the same vocabulary with domains D and D′,
respectively, are isomorphic if there is a bijection π : D ↔ D′, such that
s′ = π(s).

A “sequential procedure” is like Gurevich’s [3] “sequential algorithm”, with
two modifications for computing a specific function, rather than expressing an
abstract algorithm: the procedure vocabulary includes special constants “In”
and “Out”; there is a single initial state, up to changes in In.

Definition 1.2 [Sequential Procedures]

• A sequential procedure A is a tuple 〈F , In, Out, D,S,S0, τ〉, where: F is
a finite vocabulary; In and Out are nullary function names in F ; D, the
procedure domain, is a domain; S, its states, is a collection of structures of
vocabulary F , closed under isomorphism; S0, the initial states, is a subset
of S over the domain D, containing equal states up to changes in the value
of In (often referred to as a single state s0); and τ : S → S, the transition
function, such that:
· Domain invariance. The domain of s and τ(s) is the same for every

state s ∈ S.
· Isomorphism constraint. τ(π(s)) = π(τ(s)) for some bijection π.
· Bounded exploration. There exists a finite set T of “critical” terms,

such that ∆(s, τ(s)) = ∆(s′, τ(s′)) if s and s′ coincide over T .
Tuple elements of a procedure A are indexed FA, τA, etc.

• A run of a procedure A is an infinite sequence s0 ;τ s1 ;τ s2 ;τ · · ·,
where s0 is an initial state and every si+1 = τA(si).

• A run s0 ;τ s1 ;τ s2 ;τ · · · terminates if si = si+1 from some point on.

• The terminating state of a terminating run s0 ;τ s1 ;τ s2 ;τ · · · is
its stable state. If there is a terminating run beginning with state s and
terminating in state s′, we write s ;!

τ s′.

• The extensionality of a sequential procedure A over domain D is the partial

116

Boker and Dershowitz

function f : D → D, such that f(x) = [[Out]]s′ whenever there’s a run
s ;!

τ s′ with [[In]]s = x, and is undefined otherwise.

Domain invariance simply ensures that a specific “run” of the procedure
is over a specific domain. The isomorphism constraint reflects the fact that
we are working at a fixed level of abstraction. See [3, p. 89]. The bounded-
exploration constraint ensures that the behavior of the procedure is effective.
This reflects the informal assumption that the program of an algorithm can
be given by a finite text [3, p. 90].

2 Programmable Machines

The transition function of a “programmable machine” is given by a finite “flat
program”:

Definition 2.1 [Programmable Machines]

• A flat program P of vocabulary F has the following syntax:

if x11
.
= y11 and x12

.
= y12 and . . . x1k1

.
= y1k1

then l1 := v1

if x21
.
= y21 and x22

.
= y22 and . . . x2k2

.
= y2k2

then l2 := v2

...

if xn1
.
= yn1 and xn2

.
= yn2 and . . . xnkn

.
= ynkn

then ln := vn

where each
.
= is either ‘=’ or ‘6=’, n, k1, . . . , kn ∈ N, and all the xij, yij, li,

and vi are F -terms.

• Each line of the program is called a rule.

• The activation of a flat program P on an F -structure s, denoted P (s), is
a set of updates {l := v | if p then l := v ∈ P, [[p]]s} (under the standard
interpretation of =, 6=, and conjunction), or the empty set ∅ if the above
set includes two values for the same location.

• A programmable machine is a tuple 〈F , In, Out, D,S,S0, P 〉, where all but
the last component is as in a sequential procedure (Definition 1.2), and P
is a flat program of F .

• The run of a programmable machine and its extensionality are defined as
for sequential procedures (Definition 1.2), where the transition function τ
is given by τ(s) = s′ ∈ S such that ∆(s, s′) = P (s).

To make flat programs more readable, we combine rules, as in

% comment
if cond-1

stat-1

117

Boker and Dershowitz

stat-2
else

stat-3

Analogous to the the main lemma of [3], one can show that every pro-
grammable machine is a sequential procedure, and every sequential procedure
is a programmable machine.

In contradistinction to those Abstract Sequential Machines (ASMs), we
do not have built in equality, booleans, or an undefined in the definition of
procedures: The equality notion is not presumed in the procedure’s initial
state, nor can it be a part of the initial state of an “effective procedure”,
as defined below. Rather, the transition function must be programmed to
perform any needed equality checks. Boolean constants and connectives may
be defined like any other constant or function. Instead of a special term for
undefined values, a default domain value may be used explicitly.

3 Effective Models

We define an “effective procedure” as a sequential procedure satisfying an
“initial-data” postulate (Axiom 3.3 below). This postulate states that the
procedures may have only finite initial data in addition to the domain repre-
sentation (“base structure”). An “effective model” is, then, any set of effective
procedures that share the same domain representation.

We formalize the finiteness of the initial data by allowing the initial state
to contain an “almost-constant structure”. Since we are heading for a char-
acterization of effectiveness, the domain over which the procedure actually
operates should have countably many elements, which have to be nameable.
Hence, without loss of generality, one may assume that naming is via terms.

Definition 3.1 [Almost-Constant and Base Structures]

• A structure S is almost constant if all but a finite number of locations have
the same value.

• A structure S of finite vocabulary F over a domain D is a base structure
if all the domain elements are the value of a unique F -term. That is, for
every element e ∈ D there exists a unique F -term t such that [[t]]S = e.

• A structure S of vocabulary F over domain D is the union of structures S ′

and S ′′ of vocabularies F ′ and F ′′, respectively, over D, denoted S = S ′]S ′′,
if F = F ′] F ′′, [[l]]S = [[l]]S′ for every location l of S ′, and [[l]]S = [[l]]S′′ for
every location l of S ′′.

A base structure is isomorphic to the standard free term algebra (Herbrand
universe) of its vocabulary.

Proposition 3.2 Let S be a base structure over vocabulary G and domain D.
Then:

118

Boker and Dershowitz

• Vocabulary G has at least one nullary function.

• Domain D is countable.

• Every domain element is the value of a unique location of S.

Axiom 3.3 (Initial Data) The procedure’s initial states consist of an infi-
nite base structure and an almost-constant structure. That is, for some infinite
base structure BS and almost-constant structure AS, and for every initial state
s0, we have s0 = BS] AS] {In} for some In.

Definition 3.4 [Effective Procedures and Models]

• An effective procedure A is a sequential procedure satisfying the initial-data
postulate. An effective procedure is, accordingly, a tuple
〈F , In, Out, D,S,S0, τ,BS,AS〉, adding a base structure BS and an almost-
constant structure AS to the sequential procedure tuple, defined in Defini-
tion 1.2.

• An effective model E is a set of effective procedures that share the same
base structure. That is, BSA = BSB for all effective procedures A, B ∈ E.

A computational model might have some predefined complex operations, as
in a RAM model with built-in integer multiplication. Viewing such a model
as a sequential algorithm allows the initial state to include these complex
functions as oracles [3]. Since we are demanding effectiveness, we cannot
allow arbitrary functions as oracles, and force the initial state to include only
finite data over and above the domain representation (Axiom 3.3). Hence, the
view of the model at the required abstraction level is accomplished by “big
steps”, which may employ complex functions, while these complex functions
are implemented by a finite sequence of “small steps” behind the scenes. That
is, (the extensionality of) an effective procedure may be included (as an oracle)
in the initial state of another effective procedure. (Cf. the “turbo” steps of
[2].)

4 Effective Includes Computable

Turing machines, and other computational methods, can be shown to be ef-
fective. We demonstrate below how Turing machines and counter machines
can be described by effective models.

Turing Machines.

We consider Turing machines (TM) with two-way infinite tapes. The tape
alphabet is {0, 1}. The two edges of the tape are marked by a special $
sign. As usual, the state (instantaneous description) of a Turing machine is
〈Left, q,Right〉, where Left is a finite string containing the tape section left of
the reading head, q is the internal state of the machine, and Right is a finite

119

Boker and Dershowitz

string with the tape section to the right to the read head. The read head
points to the first character of the Right string.

TMs can be described by the following effective model E:

Domain: Finite strings ending with a $ sign. That is the domain D =
{0, 1}∗$.

Base structure: Constructors for the finite strings (name/arity): $/0, Cons 0/1,
and Cons 1/1.

Almost-constant structure:

• Input and Output (nullary functions): In, Out. The value of In at the initial
state is the content of the tape, as a string over {0, 1}∗ ending with a $ sign.

• Constants for the alphabet characters and TM-states (nullary): 0, 1, q 0,
q 1, . . . , q k. Their initial value is irrelevant, as long it is a different value
for each constant.

• Variables to keep the current status of the Turing machine (nullary): Left,
Right, and q. Their initial values are: Left = $, Right = $, and q = q 0.

• Functions to examine the tape (unary functions): Head and Tail. Their
initial value, at all locations, is $.

Transition function: For each Turing machine m ∈ TM, define an effective
procedure m′ ∈ E via a flat program looking like this:

if q = q_0 % TM’s state q_0
if Head(Right) = 0

% write 1, move right, switch to q_3
Left := Cons_1(Left)
Right := Tail(Right)
q := q_3
% Internal operations
Tail(Cons_1(Left)) := Left
Head(Cons_1(Left)) := 1

if Head(Right) = 1
% write 0, move left, switch to q_1
Left := Tail(Left)
Right := Cons_0(Right)
q := q_1
% Internal operations
Tail(Cons_0(Right)) := Right
Head(Cons_0(Left)) := 0

if q = q_1 % TM’s state q_1
...

if q = q_k % the halting state
Out := Right

120

Boker and Dershowitz

The updates for Head and Tail are bookkeeping operations that are really
part of the “behind-the-scenes” small steps.

The procedure also requires some initialization, in order to fill the internal
functions Head and Tail with their values for all strings up to the given input
string. It sequentially enumerates all strings, assigning their Head and Tail
values, until encountering the input string. The following internal variables
(nullary functions) are used in the initialization (Name = initial value): New =
$, Backward = 0, Forward = 1; AddDigit = 0, and Direction = $.

% Sequentially constructing the Left variable
% until it equals to the input In, for filling
% the values of Head and Tail.
% The enumeration is $, 0$, 1$, 00$, 01$, ...
if Left = In % Finished

Right := Left
Left := $

else % Keep enumerating
if Direction = New % default val

if Head(Left) = $ % $ -> 0$
Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

if Head(Left) = 0 % e.g. 110$ -> 111$
Left := Cons_1(Tail(Left))
Head(Cons_1(Tail(Left)) := 1
Tail(Cons_1(Tail(Left)) := Tail(Left)

if Head(Left) = 1 % 01$->10$; 11$->000$
Direction := Backward
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Backward
if Head(Left) = $ % add rightmost digit

Direction := Forward
AddDigit := True

if Head(Left) = 0 % change to 1
Left := Cons_1(Tail(Left))
Direction := Forward

if Head(Left) = 1 % keep backwards
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Forward % Gather right 0s
if Head(Right) = $ % finished gathering

Direction := New
if AddDigit = 1

Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

121

Boker and Dershowitz

AddDigit = 0
else

Left := Cons_0(Left)
Right := Tail(Right)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

Counter Machines.

Counter machines (CM) can be described by the following effective model
E: The domain is the natural numbers N. The base structure consists of
a nullary function Zero and a unary function Succ, interpreted as the reg-
ular successor over N. The almost-constant structure has the vocabulary
(name/arity): Out/0, CurrentLine/0, Pred/1, Next/1, Reg 0, . . . , Reg n/0,
and Line 1, . . . , Line k/0. Its initial data are True = 1, Line i = i, and all
other locations are 0. The same structure applies to all machines, except for
the number of registers (Reg i) and the number of lines (Line i). For ev-
ery counter machine m ∈ CM define an effective procedure m′ ∈ E with the
following flat program:

% Initialization: fill the values of the
% predecessor function up to the value
% of the input
if CurrentLine = Zero

if Next = Succ(In)
CurrentLine := Line_1

else
Pred(Succ(Next)) := Next
Next := Succ(Next)

% Simulate the counter-machine program.
% The values of a,b,c and d are as in
% the CM-program lines.
if CurrentLine = Line_1

Reg_a := Succ(Reg_a) % or Pred(Reg_a)
Pred(Succ(Reg_a)) := Reg_a
if Reg_b = Zero

CurrentLine := c
else

CurrentLine := d
if CurrentLine = Line_2

...
% Always:
Out := Reg_0

122

Boker and Dershowitz

5 Discussion

In [3], Gurevich proved that any algorithm satisfying his postulates can be
represented by an Abstract State Procedure. But an ASM is designed to be
“abstract”, so is defined on top of an arbitrary structure that may contain non-
effective functions. Hence, it may compute non-effective functions. We have
adopted Gurevich’s postulates, but added an additional postulate (Axiom 3.3)
for effectivity: an algorithm’s initial state may contain only finite data in
addition to the domain representation. Different runs of the same procedure
share the same initial data, except for the input; different procedures of the
same model share a base structure.

Here, we showed that Turing machines and counter machines are effective
models. In [1], we prove the flip side, namely that Turing machines can sim-
ulate all effective models. To cover hypercomputational models, one would
need to relax the effectivity axiom or the bounded exploration requirement.

References

[1] Udi Boker and Nachum Dershowitz, A formalization of the Church-Turing
Thesis, submitted.

[2] N. G. Fruja and R. F. Stärk. The hidden computation steps of Turbo Abstract
State Machines. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract
State Machines — Advances in Theory and Applications, 10th International
Workshop, ASM 2003, Taormina, Italy, pages 244–262. Springer-Verlag, Lecture
Notes in Computer Science 2589, 2003.

[3] Yuri Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1:77–111, 2000.

123

DCM 2005 Preliminary Version

iRho: the Software
[System Description]

Luigi Liquori

INRIA, France

Abstract
This paper describes the first implementation of an interpreter for iRho, an imperative
version of the Rewriting-calculus, based on pattern-matching, pattern-abstractions, and
side-effects. The implementation contains a parser and a call-by-value evaluator in Natural
Semantics; everything is written using the programming language Scheme. The core of
this implementation (evaluator) is certified using the proof assistant Coq.

Performances are honest compared to the minimal essence of the implementation. This
document describes, by means of examples, how to use and to play with iRho. The final
objective is to make iRho a, so called, agile programming language, in the vein of some
useful scripts languages, like, e.g. Python and Ruby, where proof search is not only feasible
but easy.

1 Introduction to the Rewriting Calculus

One of the main advantages of the rewriting-based languages, like Elan [16],
Maude [14], ASF+SDF [19, 2], OBJ∗ [10], Stratego [18] is pattern-matching.
Pattern-matching allows to discriminate between alternatives: once a pattern is
recognized, a pattern is associated with an action. The corresponding pattern is
thus rewritten in an appropriate instance of a new one.

Another advantage of rewriting-based languages (in contrast with ML or
Haskell) is the ability to handle non-determinism in the sense of a collection of
results: pattern matching need not to be exclusive, i.e. multiple branches can be
“fired” simultaneously. An empty collection of results represents an application
failure, a singleton represents a deterministic result, and a collection with more
than one element represents a non-deterministic choice between the elements of
the collection. This feature makes the calculus quite close to logic languages too;
this means that it is possible to make a product of two patterns, thus applying "in
parallel" both patterns.

Optimistic/pessimistic semantics can then be imposed to the calculus by
defining successful results as products that have at least a component (respectively
all the components) different from error values. It should be possible to obtain a
logic language on top of it by redefining appropriate strategy for backtracking.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Liquori

Useful applications lie in the field of pattern recognition, and strings/trees
manipulation. Pattern-matching has been widely used in functional and logic
programming, as ML [15,7], Haskell [11], Scheme [17], or Prolog [9]; generally,
it is considered a convenient mechanism for expressing complex requirements
about the function’s argument, rather than a basis for an ad hoc paradigm of
computation.

The Rewriting-calculus (Rho) [4, 5] integrates in a uniform way, matching,
rewriting, and functions; its abstraction mechanism is based on the rewrite rule
formation: in a term of the form P → A, one abstracts over the pattern P .
Note that the Rewriting-calculus is a generalization of the Lambda-calculus if
the pattern P is a variable. If an abstraction P → A is applied to the term
B, then the evaluation mechanism is based on the binding of the free variables
present in P to the appropriate subterms of B applied to A. Indeed, this binding
is achieved by matching P against B. One of the advantages of matching is that it
is “customizable” with more sophisticated matching theories, e.g. the associative-
commutative one.

This year, an imperative extension enhancing the (functional) Rho, was
presented in [13]; shortly, we introduced imperative features like referencing (i.e.
“malloc-like ops”, ref expr), dereferencing (i.e. "goto-memory ops”, ! expr), and
assignments operators (X := expr). The associated type system was enriched
with dereferencing-types (i.e. pointer-types, int ref), and product-types (e.g.
int → int ∧ nat → nat). The mathematical content of this extension was validated
by the help of the semiautomatic proof assistant Coq. A toy software
prototype, mimicking the mathematical behavior of the dynamic semantics was
also implemented in Scheme. This paper introduces shortly the first LGPL release
of the software; a parser has been implemented and more syntactic sugar has been
added to make the interpreted easier to use. The core kernel is conform to the
semantics specification of [13]; future releases will also come with a machine
assisted “certificate” that the design choices are correct. We may envisage also
proof extraction of the main kernel routine, in case of a “port” of the software
in Caml or in Haskell 1 . This paper presents the syntax of the iRho language
and some examples that can be run directly by cut and paste in the interpreter.
The current distribution can be found in: http://www-sop.inria.fr/mirho/
Luigi.Liquori/iRho/. It contains: two software releases iRho-1.0.scm,
and iRho-1.1.scm, a precompiled binary version for Linux architecture 2 , a
file demo.rho containing many examples, and a copy of the [13] paper (journal
version).

We conclude with a table showing future releases and evolutions of the present
software, like (polymorphic) type inference, powerful matching and unification
algorithms, exceptions handlers, strategies, calling external languages, objects, etc.

1 The extraction mechanism in Coq can currently target Caml or Haskell code.
2 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), stripped.

125

http://www-sop.inria.fr/mirho/Luigi.Liquori/iRho/
http://www-sop.inria.fr/mirho/Luigi.Liquori/iRho/

Liquori

2 Playing with iRhoSW

The interpreter iRhoSW greets you as follows:

--
| ----------\ |
| | i R h o > |
| ----------/ |
| An Imperative Rewriting Calculus Interpreter |
| Kernel Certified by the Proof Assistant Coq |
| Powered by Bigloo Scheme |
| Copyright Inria 2005 |
| Version 1.1alpha |
| NoEffect Theory Loaded |
| $ = Switch Theory |
| # = Clean Namespace |
@ = Exit iRho

As usual, the first thing to learn is how to exit from the read-eval-print loop:
just evaluate "@;;" to exit. Evaluating "$;;" moves the interpreter to the empty
(or syntactic) matching theory to the no-stuck matching theory, introduced firstly
in [5]: we will be more precise about this theory in a moment, after presenting the
syntax and a sketch of the reduction semantics. Evaluate "#;;" allows to clean
a global namespace, i.e. a space where constants, functions, and term rewriting
systems can be names and globally reused.

Syntax

The untyped (abstract) syntax of iRho is as follows:

key ::= "(" | ")" | "," | "^" | "!" | ":=" | "->" |
"<-?" | "?->" | ";" | "=" | "[" | "]" | "|" Keywords

var ::= "any sequence of capital alphadigit" Variables
const ::= "any sequence of non capital alphadigit" Constants
patt ::= var | const | const patt |

patt,patt | ^ patt Patterns
expr ::= const | var | patt -> expr | expr expr |

expr,expr | ^ expr | ! expr |
expr:=expr | expr <-? expr ?-> expr |
var=expr | [(var=expr |)∗] Expressions

One important point is that linearity in pattern is not enforced in the syntax;
the solution we adopt in this formalization and implementation of the Rewriting-
calculus was influenced by the choice of the implementation language of our
operational semantics, namely Scheme and the matching algorithm adopted [12].
As such, the specification of the matching algorithm in iRho accepts non-linear
patterns, and compares subparts of the datum (through ≡, implemented via the
primitive equiv? in Scheme). Confluence is preserved, thanks to the call-by-
value strategy of the operational semantics. Examples of legal terms are:

126

Liquori

iRho IN > 12;;
iRho OUT > 12
iRho IN > dummy;;
iRho OUT > dummy
iRho IN > x;;
iRho OUT > x
iRho IN > X;;
iRho OUT > (Effect: Unbound Variable X)
iRho IN > 12;;
iRho OUT > 12
iRho IN > (12->13 12);;
iRho OUT > 13
iRho IN > (12->12 14);;
iRho OUT > (Effect: Pattern Mismatch)
iRho IN > ((a->b,a->d) a);;
iRho OUT > (b , d)
iRho IN > ((a->b,c->d) a);;
iRho OUT > b
iRho IN > (f X Y)->X;;
iRho OUT > (Fun ((f X) Y) -> X)
iRho IN > ((f X X)->X (f 3 4));;
iRho OUT > (Effect: Pattern Mismatch)
iRho IN > $;;
iRho OUT > Switching_to_empty_theory
iRho IN > ((a->b,c->d) a);;
iRho OUT > (b , (Effect: Pattern Mismatch))

The last example can help to understand that the no-stuck theory absorbs
pattern-matching failures, while the empty theory is not. This is perhaps a good
point to introduce the reduction semantics.

Reduction Semantics

The semantics behaves as follows (see [13] for a detailed presentation):

(patt -> expr exprnf) => sigma(expr) where sigma=patt<<exprnf
((expr1,expr2) exprnf) => ((expr1 exprnf),(expr2 exprnf))

The first rule fires an application if the argument is in normal-form (call-by-
value semantics) and if it matches with the pattern, while the second rule distributes
the application to all elements of a structure. That’s all you need to do if you
want to play just with the functional fragment of the Rho. In a nutshell, the
functional fragment is “just” a Lambda-calculus with patterns, records, and non
exclusive pattern-matching (i.e. multiple branches can be fired simultaneously).
The possibility to fire, in parallel, multiple matching branches is one of the biggest
peculiarity of the Rewriting-calculus w.r.t. other languages featuring (exclusive and
sequential) pattern-matching.

Adding imperative features causes to introduce a store, i.e. an global partial
mapping s from locations to expressions in normal forms (i.e. values), and to add

127

Liquori

the following reduction rules:

^ exprnf /s => loc/(s,loc=exprnf) where loc not in Dom(s)
!loc /s => s(loc)/ s where loc in Dom(s)

loc:=exprnf /s => exprnf/(s,loc=exprnf) where loc in Dom(s)
exprs1;expr2/s => ((X->expr2) expr1)/s where X fresh in expr2

In a nutshell: the first rule allocates a new fresh location loc in the store and
binds it to the value exprnf; the second rule reads the content of the location loc;
the third rule writes in the location loc the value exprnf. The last rule (sequence)
is just a macro for a dummy function application; the call-by-value strategy ensures
that expr1 will be evaluated (possibly with a store modification) before expr2.
Examples of legal terms are:

iRho IN > ^ 1,2;;
iRho OUT > ((Ref 1) , 2)
iRho IN > ^ (1,2);;
iRho OUT > (Ref (1 , 2))
iRho IN > (!^(X->X) 4);;
iRho OUT > 4
iRho IN > ((X,Y)->(X,Y) (^3,^4));;
iRho OUT > ((Ref 3) , (Ref 4))
iRho IN > ((X,Y)->(Y:=!X;(!X,!Y)) (^3,^4));;
iRho OUT > (3 , 3)
iRho IN > ((X,Y)->(Y:=!X;(X,!X,Y,!Y)) (^3 , ^4));;
iRho OUT > ((Ref 3) , (3 , ((Ref 3) , 3)))
iRho IN > ((f X Y)->(Z->(X:=!Z) X) (f ^3 ^4));;
iRho OUT > 3
iRho IN > (X->((^ Y->Y) X) ^ 4);;
iRho OUT > 4
iRho IN > ((XREF->((X->XREF:=X) 5)) ^dummy);;
iRho OUT > 5

The macro “=”

This simple macro allows to modify a global namespace; it is also useful to define
quickly constants values, functions, and term rewriting systems with built-in fix-
points.

iRho IN > ID = (X->X);;
iRho OUT > (Fun X -> X)
iRho IN > IDID = (X->X X->X);;
iRho OUT > (Fun X -> X)
iRho IN > ID;;
iRho OUT > (Fun X -> X)
iRho IN > (ID 4);;
iRho OUT > 4
iRho IN > IDID;;
iRho OUT > (Fun X -> X)
iRho IN > (IDID 4);;

128

Liquori

iRho OUT > 4
iRho IN > MATCHPAIR = ((f(X,Y))->X);(MATCHPAIR (f(2,3)));;
iRho OUT > 2
iRho IN > MATCHCURRY = (f X Y)->X;(MATCHCURRY (f 2 3));;
iRho IN > SWAP=((X,Y)->((AUX->(AUX:=!X;X:=!Y;Y:=!AUX;

(!X,!Y,!AUX)))(^0)));;
iRho OUT > (Fun (X , Y) -> ((Fun AUX ->

((Fun FRESH1005 -> ...
((Bang X) , ((Bang Y) , (Bang AUX))))
(Ass Y (Bang AUX)))) (Ass X (Bang Y))))
(Ass AUX (Bang X)))) (Ref 0))) Swapping two variables

iRho IN > (SWAP(^4,^5));;
iRho OUT > (5 , (4 , 4))
iRho IN > FIXV = FUN->VAL->(FUN (FIXV FUN) VAL);;
iRho OUT > (Fun FUN -> (Fun VAL ->

((FUN (FIXV FUN)) VAL))) A call-by-value fix point
iRho IN > (FIXV ID 3);;
Segmentation fault Sorry, reload everything ...
iRho IN > LETRECPLUS = ((PLUS ->

(PLUS ((succ (succ 0)),(succ (succ 0)))))
(FIXV (PLUS -> VAL ->
(((0,N) -> N ,
((succ M),N) -> (succ (PLUS (M,N)))) VAL))));;

letrec PLUS = ‘‘Peano’s plus’’ in (PLUS (2,2))

If-then-else

Control structures can be easily be defined as follows:

iRho IN > NEG = (true -> false, false -> true);;
iRho OUT > ((Fun true -> false) , (Fun false -> true))
iRho IN > (NEG true);;
iRho OUT > false
iRho IN > AND = ((true, true) -> true,

(true, false) -> false,
(false,true) -> false,
(false,false) -> false);;

iRho OUT > ((Fun (true , true) -> true) ,
((Fun (true , false) -> false) ,
((Fun (false , true) -> false) ,
(Fun (false , false) -> false))))

iRho IN > OR = ((true, true) -> true,
(true, false) -> true,
(false,true) -> true,
(false,false) -> false);;

iRho OUT > ((Fun (true , true) -> true) ,
((Fun (true , false) -> true) ,

129

Liquori

((Fun (false , true) -> true) ,
(Fun (false , false) -> false))))

iRho IN > OMG = (X->(X X));;
iRho OUT > (Fun X -> (X X))
iRho IN > ((OMG OMG) <-? (AND (true,true)) ?-> 4);;Happy syntax
iRho OUT > 4 Don’t try with false :-)

Defining Term Rewriting Systems

One may wonder a simpler way to define a term rewriting system and a fix-point
operator allowing to use a term rewriting system; the iRhoSW offers two ways to
do it in a simpler and efficient way. The first is by using the macros “=” while
the latter is by using the macros “[...]”. The main difference between those two
alternatives is in efficiency (the former being faster the the latter). We first introduce
some macros for Peano’s numbers

iRho IN > ZERO = 0;;
ONE = (succ 0);;
TWO = (succ ONE);;
THREE = (succ TWO);;
...

Then we simply define our PLUS term rewriting system as follows:

iRho IN > PLUS = ((0,N) -> N,
((succ N),M) -> (succ (PLUS (N,M))));;

iRho OUT > ((Fun (0 , N) -> N) ,
(Fun ((succ N) , M) -> (succ (PLUS (N , M)))))

iRho IN > (PLUS (THREE,THREE));;
iRho OUT > (succ (succ (succ (succ (succ (succ 0))))))

or as follows:

iRho IN > [PLUS = ((0,N) -> N,
((succ N),M) -> (succ (PLUS (N,M))))];;

iRho OUT > Term Rewriting System Definition
iRho IN > [PLUS = ((0,N) -> N,

((succ N),M) -> (succ (PLUS (N,M))))];
(PLUS (THREE,THREE));;

iRho OUT > (succ (succ (succ (succ (succ (succ 0))))))

Note that in the two encodings (using “=” or “[...]”) one term rewriting system can
“call” another term rewriting system as follows (using sequencing):

iRho IN > PLUS = ((0,N) -> N ,
((succ N),M) -> (succ (PLUS (N,M))));

FIB = (0 -> (succ 0) ,
(succ 0) -> (succ 0) ,

(succ (succ X)) -> (PLUS ((FIB (succ X)),
(FIB X))));

(FIB FOUR);; First encoding

130

Liquori

iRho IN > [PLUS = ((0,N) -> N ,
((succ N),M) -> (succ (PLUS (N,M))))

|
FIB = (0 -> (succ 0) ,

(succ 0) -> (succ 0) ,
(succ (succ X)) -> (PLUS ((FIB (succ X)),

(FIB X))))];
(FIB FOUR);; Second encoding

iRho OUT > (succ (succ (succ (succ (succ 0)))))
iRho IN > [PLUS = ((0,N) -> N ,

((succ N),M) -> (succ (PLUS (N,M))))
|
MULT = ((0,M) -> 0,

((succ N),M) -> (PLUS (M,(MULT (N,M)))))
|
POW = ((N,0) -> (succ 0),

(N,(succ M)) -> (MULT (N,(POW (N,M)))))];;
(POW (TWO,TEN));; Power

iRho IN > [ACK =
((0,N) ->(succ N),
((succ M),0) ->(ACK(M,(succ 0))),
((succ M),(succ N))->(ACK(M,(ACK((succ M),N)))))];

(ACK (THREE,FOUR));; Ackermann
iRho IN > LIST = (10,11,12,13,15,16,nil);;
iRho In > [FINDN = ((0,nil) -> fail,

((succ N),nil) -> fail,
((succ 0),(X,Y)) -> X,
((succ N),(X,Y)) -> (FINDN (N,Y)))];

(FINDN (THREE,LIST));; Find an element in a list
iRho In > [KILLM = ((m,(n,nil)) -> (n,nil),

(m,(m,X)) -> X,
(m,(n,X)) -> (n,(KILLM (m,X))))];

(KILLM (13,LIST));; Kill an element in a list

A More Tricky Example: Negation Normal Form

This function is used in implementing decision procedures, present in almost all
model checkers. The processed input is an implication-free language of formulas
with generating grammar:

φ ::= p | and(φ, φ) | or(φ, φ) | not(φ)

We present three encodings, the first uses the “=” macro, the second uses the “[...]”
macro and the last is just the macro-expansion of the second one (some outputs are
omitted).

iRho IN > PHI = (and ((not (and (p,q))),(not (and (p,q)))));;
iRho IN > NNF = (p -> p,

131

Liquori

q -> q,
(not (not X)) -> (NNF X),
(not (or (X,Y))) -> (and ((not (NNF X)),(not (NNF Y)))),
(not (and (X,Y))) -> (or ((not (NNF X)),(not (NNF Y)))),
(and (X,Y)) -> (and ((NNF X),(NNF Y))),
(or (X,Y)) -> (or ((NNF X),(NNF Y))));

(NNF PHI);; First encoding
iRho IN > [NNF = (p -> p,

q -> q,
(not (not X)) -> (NNF X),
(not (or (X,Y))) -> (and ((not (NNF X)),(not (NNF Y)))),
(not (and (X,Y))) -> (or ((not (NNF X)),(not (NNF Y)))),
(and (X,Y)) -> (and ((NNF X),(NNF Y))),
(or (X,Y)) -> (or ((NNF X),(NNF Y))))];

(NNF PHI);; Second encoding
iRho OUT > (and((or((not p),(not q))),(or((not p),(not q)))))

Certification: the DIMPRO pattern

In [13] we experimented with an interesting “pattern (in the sense of “The Gang
of Four” [8]) called DIMPRO, a.k.a. Design-IMplement-PROve, to design safe
software, which respects in toto its mathematical and functional specifications. The
iRhoSW is a direct derivative of such a methodology.

Intuitively, we started from a clean and elegant mathematical design, from
which we continued with an implementation of a prototype satisfying the design
(using a functional language), and finally we completed it with a mechanical
certification of the mathematical properties of the design, by looking for the
simplest “adequacy” property of the related software implementation. These three
phases are strictly coupled and, very often, one particular choice in one phase
induced a corresponding choice in another phase, very often forcing backtracking.

The process refinement is done by iterating cycles until all the global properties
wanted are reached (the process is reminiscent of a fixed-point computation, or of
a B-refinement [1]). All three phases have the same status, and each can influence
the other.

Our recipe probably suggests a new schema, or “pattern”, in the sense of “The
Gang of Four” [8], for design-implement-certify safe software. This could be
subject of future work. A small software interpreter for our core-calculus is surely
a good test of the “methodology”. More generally, this methodology could be
applied in the setting of raising quality software to the highest levels of the Common
Criteria, CC [6] (from EAL5 to EAL7), or level five of the Capability Maturity
Model, CMM. We schedule in our agenda our novel DIMPRO, in the folklore of
“design pattern”, hoping that it would be useful to the community developing safe
software for crucial applications.

132

Liquori

Agenda

Our iRhoSW is really young: the table below sketch some possible improvements
planned in the next two future releases.

major improvements/release 2.0 3.0

exceptions on pattern-matching failure X

first-order type inference X

more control structures and strategies X

simple objects and object-based inheritance X

type-inference à la Damas-Milner X

unification and AC matching theory X

rewriting-rule as patterns [3] X

calling externals Scheme/Java/C X

I/O (files) X

certification using Coq X ??

References

[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings.
[2] Asf+Sdf Team. The Asf+Sdf Meta-Environment Home Page, 2005.
[3] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type Systems. In

Proc. of POPL. 2003.
[4] H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In Proc. of FOSSACS, volume

2030 of LNCS, pages 166–180, 2001.
[5] H. Cirstea, L. Liquori, and B. Wack. Rho-calculus with Fixpoint: First-order system.

In Proc. of TYPES. Springer-Verlag, 2004.
[6] Common Criteria Consortium. The Common Criteria Home Page, 2005.
[7] Cristal Team. OCaml Home page, 2005.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides (The Gang of Four). Design Patterns

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[9] GNU Prolog Team. The Prolog Home Page, 2005.

[10] J. Goguen. The OBJ Family Home Page, 2005.
[11] Haskell Team. The Haskell Home Page, 2005.
[12] G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Ph.d. thesis,

Université de Paris 7 (France), 1976.
[13] Liquori, L. and Serpette, B. iRho, An Imperative Rewriting Calculus. In Proc. of

PPDP, pages 167–178. The ACM Press, 2004.
[14] Maude Team. The Maude Home Page, 2005.
[15] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML

(Revised). MIT Press, 1997.
[16] Protheo Team. The Elan Home Page, 2005.
[17] Scheme Team. The Scheme Language, 2005.
[18] Stratego Team. The Stratego Home Page, 2005.
[19] A. van Deursen, J. Heering, and P. Klint. Language Prototyping, 1996.

133

