
9th International Workshop on Developments in Computational Models

DCM 2013

Buenos Aires, Argentina
26 August 2013

Preliminary Proceedings

Edited by Eduardo Bonelli, Mauricio Ayala-Rincón and Ian Mackie
Selected papers will be published in

Electronic Proceedings in Theoretical Computer Science.

DCM 2013 is a satellite event of CONCUR 2013

ii

iii

Preface

This volume contains the papers presented at the Ninth International Workshop on Developments in
Computational Models (DCM) held in Buenos Aires, Argentina on 26th August 2013, as a satellite event
of CONCUR 2013.

Several new models of computation have emerged in the last years, and many developments of tradi-
tional computational models have been proposed with the aim of taking into account the new demands of
computer systems users and the new capabilities of computation engines. A new computational model,
or a new feature in a traditional one, usually is reflected in a new family of programming languages, and
new paradigms of software development.

The aim of this workshop is to bring together researchers who are currently developing new compu-
tational models or new features for traditional computational models, in order to foster their interaction,
to provide a forum for presenting new ideas and work in progress, and to enable newcomers to learn
about current activities in this area. DCM 2013 will be a one-day satellite event of CONCUR 2013. This
is the 9th event in the series since 2005 - see the DCM website for details of previous events.

Topics of interest include all abstract models of computation and their applications to the develop-
ment of programming languages and systems. This includes (but is not limited to):

• Functional calculi: lambda-calculus, rho-calculus, term and graph rewriting;

• quantum computation, including implementations and formal methods in quantum protocols;

• probabilistic computation and verification in modelling situations;

• chemical, biological and bio-inspired computation, including spatial models, self-assembly, growth
models;

• general concurrent models including the treatment of mobility, trust, and security;

• infinitary models of computation;

• information-theoretic ideas in computing.

The Programme Committee selected seven papers for presentation at DCM 2013. In addition, the
programme includes invited talks by Verónica Becher, University of Buenos Aires, CONICET, Ar-
gentina, (Turing’s Normal Numbers: Towards Randomness) and Joos Heintz, University of Buenos
Aires, CONICET, Argentina, (Quiz games: a new approach to information hiding based algorithms
in scientific computing).

Many people helped to make DCM 2013 a success. In particular, we wish to thank the CONCUR
2013 organisation team. We are also grateful to the external referees for their careful and efficient work
in the reviewing process, and in particular the programme committee members: Pablo Arrighi, Pablo
Barceló, Mario Benevides, Paola Bonizzoni, Nachum Dershowitz, Ruben Gamboa, Rajeev Goré, Holger
Hermanns, Nao Hirokawa, Jean Krivine, Luis Lamb, Cesar Muñoz, Carlos Olarte, Femke van Raams-
donk, Camilo Rocha, Nora Szasz and René Thiemann.

Eduardo Bonelli, Mauricio Ayala-Rincón and Ian Mackie
DCM 2013 co-chairs

iv

v

Contents

(INVITED TALK) Turing’s Normal Numbers: Towards Randomness . 1
Verónica Becher

The probability of non-confluent systems . 3
Alejandro Dı́az-Caro and Gilles Dowek

Proof-graphs for Minimal Implicational Logic . 15
Marcela Quispe-Cruz and Edward Hermann Haeusler

Prefix Orders as a General Model of Dynamics . 25
Pieter Cuijpers

Causal Dynamics of Simplicial Complexes: the 2-dimensional case . 31
Pablo Arrighi and Simon Martiel

(INVITED TALK) Quiz games: a new approach to
information hiding based algorithms in scientific computing . 39
Joos Heintz

A Calculus of Located Entities . 41
Adriana Compagnoni, Paola Giannini, Catherine Kim, Matthew Milideo and Vishakha Sharma

Towards Formal, Interaction-based Models of Grid Computing Infrastructures . 53
Carlos Ramirez, Jorge A. Pérez, Jesus Aranda and Juan F. Diaz

Using HMM in Strategic Games . 69
Mario Benevides, Isaque Lima, Pedro Rougemont and Rafael Nader

Submitted to:
DCM 2013

Turing’s Normal Numbers: Towards Randomness

Verónica Becher
Universidad de Buenos Aires and CONICET

In a manuscript entitled ”A note on normal numbers” and written presumably in 1938 Alan Turing
gave an algorithm that produces real numbers normal to every integer base. This proves, for the first
time, the existence of computable instances and provides an answer to Borel’s problem on giving
examples of normality. Furthermore, with this work Turing pioneers the theory of randomness and
shows that he had the insight, ahead of his time, that traditional mathematical concepts, like measure
or continuity, could be made computational. In this talk I will highlight the ideas in these achieve-
ments of Turing, which are largely unknown because his manuscript remained unpublished until it
appeared in his Collected Works in 1992.

Preliminary Report. Final version to appear in:
DCM 2013

c© A. Dı́az-Caro & G. Dowek
This work is licensed under the
Creative Commons Attribution License.

The probability of non-confluent systems

Alejandro Dı́az-Caro
Université Paris Ouest

200 avenue de la République
92001 Nanterre, France

INRIA
23 avenue d’Italie, CS 81321
75214 Paris Cedex 13, France

alejandro@diaz-caro.info

Gilles Dowek
INRIA

23 avenue d’Italie, CS 81321
75214 Paris Cedex 13, France
gilles.dowek@inria.fr

We show how to provide a structure of probability space to the set of execution traces on a non-
confluent abstract rewrite system, by defining a variant of a Lebesgue measure on the space of traces.
Then, we show how to use this probability space to transform a non-deterministic calculus into
a probabilistic one. We use as example λ+, a recently introduced calculus defined through type
isomorphisms.

1 Introduction

Many probabilistic calculi has been developed in the pasts years, e.g. [1, 9, 13, 19, 20]. In particular, the
algebraic versions of λ -calculus [5,24] are extensions to λ -calculus where a linear combination of terms,
e.g. α.r+β .s, is also a term. One way to interpret such a linear combination is that it represents a term
which is the term r with probability α , or the term s with probability β . However, endowing such a
calculus with a non-restrictive type system is a challenge [3, 4].

A simpler framework is that of non determinisitic calculi which can be seen as algebraic calculi
withouth scalars. They have been studied, for instance in [8, 10–12, 14–17, 21], however moving back
from non-determinism to probabilities is not trivial. In this paper we propose, instead of changing these
models, to define a probability measure on reductions in non-deterministic systems. In fact, as we shall
see, such a probability measure can be defined on any abstract non-deterministic transition systems, or
non-confluent abstract rewrite systems (ARS) (cf. [23, Chapter 1]).

a

�� ��
b c

�� ��
d e

Consider for example the following non-confluent ARS

a→ b , a→ c , c→ d , c→ e ,

we want to associate a probability to events such as

a→∗ b , a→∗ c , a→∗ d , a→∗ e .

In this example, assuming equiprobability, we have P(a→∗ b) = 1
2 , P(a→∗ c) = 1

2 , P(a→∗ d) = 1
4 ,

P(a→∗ e) = 1
4 . Notice that these events are not disjoints and that their sum is larger than 1. In particular,

a→∗ d implies a→∗ c. Defining the elements of the set Ω of elementary events is not completely
straightforward, in particular because we want to make it general enough to also consider infinite cases.
For example, in the following system

ai→ ai+1, ai→ a′i+1 ,

we naturally would like that P(a0→∗ an) =
1
2n .

Besides defining the elements of the set Ω, we need to define a notion of a measurable subset of Ω

and endow such a subset with a probability distribution verifying the Kolmogorov axioms.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 The probability of non-confluent systems

Our idea is to follow Lebesgue: define first the probability of rectangles, or boxes, then the probability
of any set and finally measurable sets as those that verify Lebesgue’s property. Thus besides defining the
set Ω, we need to define a subset of P(Ω) of boxes.

The first intuition would be to take paths as elements of the set Ω, for instance assigning the prob-
ability 1

2 to the paths a→ b, 1
4 to a→ c→ d and 1

4 to a→ c→ e. In fact it seems more convenient to
extend such paths to strategies prescribing one reduct for each non normal object. Boxes are then defined
as sets of strategies agreeing on a finite domain. We show in this paper that this is sufficient to define a
probability space on strategies, consistent with the intuitive probability of events of the form a→∗ b.

Our study is generic enough to be applicable to several settings, such as automatons, or any other
kind of transition systems. We use the nomenclature of abstract rewrite systems, but that of states and
transitions could be used as well. Finally, we apply this construction to λ+ [14, 15].

Plan of the paper. Section 2 introduces the basic concepts of strategies and boxes, it defines the
Lebesgue measures. Section 3 proves that the space of strategies forms a probability space. Finally,
in section 4 we show how to modify the calculus λ+ into a probabilistic calculus λ

p
+. Also, we provide

an encoding of an algebraic λ -calculus into λ
p
+ and, to some extend, the inverse translation. The omitted

proofs can be found at http://www.diaz-caro.info/probas.pdf.

2 Preliminaries

Let Λ be a set of objects and→ a function from Λ×Λ to N such that for all a the set {b | → (a,b) 6= 0}
is finite. We write a→ b if→ (a,b) 6= 0. We allow a term to be written to the same symbol more than
once, so its probability increases, e.g. if→ (a,b) = 2 and→ (a,c) = 1, then the probability of getting
b will be the double than the probability of getting c. Think for example in a non-deterministic choice
between two objects, which happen to be equal, then there would be two ways to get such an object by
doing the choice. For a given object a ∈ Λ, we denote by ρ(a) its degree, that is, the number of objects
to which it can be rewritten to in one step. Definition 2.1 formalises this.

Definition 2.1 (Degree of an object). ρ : Λ→ N is a function defined by

ρ(a) = ∑
b
→ (a,b) .

An object is normal if its degree is 0. We denote by Λ+ = {a | a ∈ Λ and ρ(a) ≥ 1} to the set of
non-normal objects, that is, objects that can be rewritten to other objects.

A strategy prescribing one reduct for each non-normal object is defined as a function from Λ+ to Λ

(cf. [23, Def. 4.9.1]).

Definition 2.2 (Strategy). A strategy is a total function f : Λ+→ Λ such that f (a) = b implies a→ b.
For instance, if a→ b and a→ b′, there are two functions, f and f ′ assigning different results to a. We
denote by Ω the set of all such functions.

A box is a set of strategies agreeing on a finite domain.

Definition 2.3 (Box). A box B⊆Ω is a set of the form { f | f (a1) = a′1, . . . , f (an) = a′n} for some objects
ai, a′i. We write B(Ω) the subset of P(Ω) containing all the boxes.

http://www.diaz-caro.info/probas.pdf

A. Dı́az-Caro & G. Dowek 5

Example 2.4. Continuing with the example given at the introduction, Λ+= {a,c}. Let f1(a)= b, f1(c)=
d and f2(a) = b, f2(c) = e be two of the four strategies of Ω. Then the box { f | f (a) = b, f (c) = d} =
{ f1}, and the box { f | f (a) = b} is { f1, f2}. f1 =

a
��

b c
��

d

; f2 =

a
��

b c
��
e

 =

Box
a

��
b

A probability distribution can be defined in term of boxes, and then be extended to arbitrary sets of
strategies.
Definition 2.5 (Probability function). Let p : B(Ω)→ [0,1] be a total function defined over boxes as
follows. If B = { f | f (a1) = a′1, . . . , f (an) = a′n}, then

p(B) =
n

∏
i=1

→ (ai,a′i)
ρ(ai)

.

By convention, if no condition is given in B (i.e. B = Ω), we have n = 0, and we consider the product of
zero elements to be 1, the neutral element of the product.

Then we define the probability measure P : P(Ω)→ [0,1] for arbitrary sets of strategies as follows

P(S) =
{

0 if S = /0
inf{∑B∈C p(B) | C is a countable family of boxes s.t. S⊆

⋃
B∈C B} in other case

Example 2.6. Consider the ARS a→ b with multiplicity 2 and a→ c with multiplicity 1.

a
�� ����

b b c

Let B be the box B = { f | f (a) = b}. Then we have p(B) = →(a,b)
ρ(a) = 2

3 . Intuitively, P(B) is the same
as p(B) (this will be later formalised in Lemma 3.10), because B is the minimum cover of B. Hence
P(B) = 2

3 .
Example 2.7. We continue with the same running example depicted in the introduction. Let f1(a) = b,
f1(c) = d and f3(a) = c, f3(c) = e be two strategies. Then the set S = { f1, f3} is minimally covered by
the boxes B1 = { f1}= { f | f (a) = b, f (c) = d} and B2 = { f3}= { f | f (a) = c, f (c) = e}. So we have
P(S) = p(B1)+p(B2) =

1
2×2 +

1
2×2 = 1

2 .

S =

 f1 =

a
��

b c
��

d

; f3 =

a
��
c
��
e

Now we can define the Lebesgue measure in terms of the given probability measure.

Definition 2.8 (Measurable). Let A be an element of P(Ω), we write A∼ for the complement of A, that
is Ω\A. The set A is Lebesgue measurable if ∀S ∈ P(Ω), we have

P(S) = P(S∩A)+P(S∩A∼) .

We define A= {A | A is measurable}.

6 The probability of non-confluent systems

3 A probability space of strategies

The aim of this section is to prove that (Ω,A,P) is a probability space. That is, the sample space Ω (the
set of all possible strategies), the set of events A, which is the set of the Lebesgue measurable sets of
strategies, and the probability measure P, form a probability space. Our proof follows [7]. We proceed by
proving that this triplet satisfies the Kolmogorov axioms, that is the probability of any event is between 0
and 1, the probability of Ω is 1, and the probability of any countable sequence of pairwise disjoint (that
is incompatible) events, is the sum of their probabilities. In order to do so, we need first to prove several
properties.

Lemma 3.1 establishes several known properties of Lebesgue measurable sets.

Lemma 3.1.

1. Let A ∈ A and S ∈ P(Ω). If A∩S = /0, then P(A∪S) = P(A)+P(S).

2. Let A1,A2 ∈ A. If A1 ⊆ A2, then P(A1)≤ P(A2).

3. /0, the empty set, is Lebesgue measurable.

4. A is Lebesgue measurable if and only if A∼ is Lebesgue measurable.

5. If A1,A2 are Lebesgue measurable, then A1∪A2 is Lebesgue measurable.

The concept of algebra (Definition 3.2) gives a closure property of subsets. As a corollary of the
Lemma 3.1 we can show that the set A of Lebesgue measurable sets form an algebra (Corollary 3.3).

Definition 3.2 (Algebra). Let X be a set. We say that a set A ∈ P(X) is an algebra over X if for all
A,B ∈ A, A∪B, A∼ and X itself are also in A.

Corollary 3.3. A is an algebra over Ω.

Proof. A∈P(Ω). Let A,B ∈A, then by Lemma 3.1(5), A∪B ∈A. By Lemma 3.1(4), A∼ ∈A. Finally,
by Lemma 3.1(3) and (4), Ω ∈ A.

Moreover, we can show that A is a σ -algebra, that is an algebra, completed to include countably
infinite operations. Definition 3.4 formalises it.

Definition 3.4 (σ -algebra). Let X be a set. We say that a set Σ ∈ P(X) is a σ -algebra over X if it is an
algebra and it is closed under countable unions, that is, if A1,A2,A3, . . . are in Σ, then so is

⋃
Ai.

Theorem 3.7 states that the set A of Lebesgue measurable sets is a σ -algebra. We need to prove two
properties of Lebesgue measurable sets first (Lemmas 3.5 and 3.6).

Lemma 3.5. Let S⊆Ω and A1, . . . ,An ∈ A be a disjoint family. Then

P

(
S∩

(
n⋃

i=1

Ai

))
=

n

∑
i=1

P(S∩Ai) .

Lemma 3.6. Let S1,S2, · · · ⊆Ω. Then

P

(
∞⋃

i=1

Si

)
≤

∞

∑
i=1

P(Si) .

Using these properties, we can prove that A is a σ -algebra (Theorem 3.7).

Theorem 3.7. A is a σ -algebra over Ω.

A. Dı́az-Caro & G. Dowek 7

Proof. By Corollary 3.3, A is an algebra. We only have to prove that A is closed under any countable
unions. That is, if B1,B2, · · · ∈ A, then

⋃
∞
i=1 Bi ∈ A. Since A is an algebra (Corollary 3.3), there is

a disjoint family A1,A2, · · · ∈ A such that A =
⋃

∞
i=1 Bi =

⋃
∞
i=1 Ai. For example, we can take A1 = B1,

A2 = B2 \B1,A3 = B3 \ (B1∪B2), Let Cn =
⋃n

i=1 Ai, so Cn ∈A again using thatA is an algebra. Also
notice that A∼ ⊆C∼n because Cn ⊆ A.

Since Cn is measurable, take any S⊆Ω and, using Lemma 3.1(2), we can calculate P(S)= P(S∩Cn)+
P(S∩C∼n) ≥ P(S∩Cn)+ P(S∩A∼). Since P(S∩Cn) = P(S∩ (

⋃n
i=1 Ai)), using Lemma 3.5, we obtain

P(S) ≥ ∑
n
i=1P(S∩Ai)+ P(S∩A∼) and, since the left-hand side is independent of n, P(S) ≥ ∑

∞
i=1P(S∩

Ai)+P(S∩A∼). Thus, by Lemma 3.6, P(S)≥ P(S∩ (
⋃

∞
i=1 Ai))+P(S∩A∼) = P(S∩A)+P(S∩A∼).

For the converse inequality, notice that S = (S∩A)∪ (S∩A∼), so using Lemma 3.6 we have P(S) =
P((S∩A)∪ (S∩A∼))≤ P(S∩A)+P(S∩A∼). Hence, A ∈ A.

As intuited in Example 2.6, the probability of a box B is p(B). Lemma 3.10 formalises it. Before
proving this lemma, we need two auxiliary ones (Lemmas 3.8 and 3.9). For short, we use the notation
B∩a = b for B∩{ f | f (a) = b}.
Lemma 3.8. Let N ⊆N and for all i ∈ N, let B,Bi ⊆Ω be boxes s.t. B⊆

⋃
i∈N Bi and p(B)> ∑i∈N p(Bi).

Then for every object a, there exists an object b such that, p(B∩a = b)> ∑i∈N p(Bi∩a = b).

Lemma 3.9. Let N ⊆N and for all i ∈ N, let B,Bi ⊆Ω be boxes s.t. B⊆
⋃

i∈N Bi and p(B)> ∑i∈N p(Bi).
Then for all family {a j} of objects, there exists a family {b j} such that, for every k, p(B∩a1 = b1∩·· ·∩
ak = bk)> ∑i∈N p(Bi∩a1 = b1∩·· ·∩ak = bk).

Lemma 3.10. Let B⊆Ω be a box, then P(B) = p(B).

Proof. Let B = { f | f (a1) = a′1, . . . , f (an) = a′n}. Since B⊆ B, by definition of P, we have P(B)≤ p(B).
We must prove p(B) ≤ P(B) = inf{∑i∈N p(Bi) | B ⊆

⋃
i∈N Bi}. In other words, we must prove that

B⊆
⋃

i∈N Bi implies p(B)≤ ∑i∈N p(Bi). We proceed by induction on n.

• If n = 0, p(B) = 1. Notice that, without restrictions in B, B = Ω. We prove this case by contradic-
tion. Let p(F)> ∑i∈N p(Bi). Then by Lemma 3.9, there exists g such that for all k,

p(a1 = g(a1)∩·· ·∩ak = g(ak))> ∑
i∈N

p(Bi∩a1 = g(a1)∩·· ·∩ak = g(ak)) (1)

Since g∈Ω⊆
⋃

i∈N Bi, there exists j such that g∈B j. Let B j be defined with constraints on objects
a j1 , . . . ,a jq . Let k = q and from equation (1),

p(a1 = g(a1)∩·· ·∩aq = g(aq))> ∑
i∈N

p(Bi∩a1 = g(a1)∩·· ·∩aq = g(aq)) (2)

We know that p(a1 = g(a1)∩ ·· · ∩ aq = g(aq)) = ∏
q
h=1

→(ah,g(ah))
ρ(ah)

, and since g ∈ B j, we know
that this is also equal to p(B j ∩ a1 = g(a1)∩ ·· · ∩ aq = g(aq)). Hence equation (2) leads to a
contradiction.

• Consider the case n− 1. Let B′ = { f | ∃g ∈ B s.t. ∀a 6= an, f (a) = g(a)}. Then if B′ ⊆
⋃

i∈N′ B
′
i

we have p(B′) ≤ ∑i∈N′ p(B′i). Notice that either B′i = Bi or Bi has a constraint on an and so
→(an,g(an))

ρ(an)
p(B′i) = p(Bi). In any case, →(an,g(an))

ρ(an)
p(B′i) ≤ p(Bi). Then p(B) = →(an,g(an))

ρ(an)
p(B′) ≤

∑i∈N′
→(an,g(an))

ρ(an)
p(B′i)≤ ∑i∈N′ p(Bi).

Theorem 3.11 (Space of strategies). (Ω,A,P) is a probability space.

8 The probability of non-confluent systems

Proof. We prove it satisfies the Kolmogorov axioms.

1st axiom: ∀A ∈ A, 0≤ P(A)≤ 1.
Since P is defined as an inf of sums of p, and p is always positive, so P cannot be negative. By
the second Kolmogorov axiom P(Ω) = 1. Notice that A is measurable and A⊆Ω, so 1 = P(Ω) =
P(Ω∩ A) + P(Ω \ A) = P(A) + P(Ω \ A), hence 1− P(Ω \ A) = P(A). Since P is not negative,
P(A)≤ 1.

2nd axiom: P(Ω) = 1.
Notice that Ω is the box including all the functions. Hence, there is no condition on the functions
and so n = 0. Then p(Ω) = 1. By Lemma 3.10, P(Ω) = p(Ω) = 1.

3rd axiom: Any countable sequence of pairwise disjoint (i.e. incompatible) events A1,A2 · · · ∈ A, satis-
fies P(A1∪A2 . . .) = ∑

∞
i=1P(Ai).

Let /0 6= I (N. Since the sets Ai are in A, consider n ∈ N\ I and we have

P

 ⋃
i∈N\I

Ai

= P

 ⋃
i∈N\I

Ai

∩An

+P

 ⋃
i∈N\I

Ai

∩A∼n

Notice that

(⋃
i∈N\I Ai

)
∩An = An and since the Ai’s are pairwise disjoint

(⋃
i∈N\I Ai

)
∩A∼n =⋃

i∈N\(I∪{n}) Ai. Therefore, considering that this is valid for any I and n /∈ I, we have

P

(
∞⋃

i=1

Ai

)
= P(A1)+P

(
∞⋃

i=2

Ai

)
= P(A1)+P(A2)+P

(
∞⋃

i=3

Ai

)
= · · ·=

∞

∑
i=1

P(Ai).

Example 3.12. Consider the non-strongly-normalising non-confluent rewrite system described in the
introduction ai→ ai+1, ai→ a′i+1, where each reduction is equiprobable and each symbol is different
from each other. It can be depicted as follows.

a0 //

""

a1

""

// a2

""

//

a′1 a′2 a′3

The probability that this rewrite system stops after exactly n steps, starting from term a0 is P(B), with
B = { f | f (a0) = a1, . . . f (an−2) = an−1 and f (an−1) = a′n}), and since B is a box, by Lemma 3.10 it is

the same to P(B) = p(B) =
1

ρ(a0) . . .ρ(an−1)
=

1
2n .

The probability of stopping at the step n or before, starting at any point before an−1, is just the

probability of the box { f | f (an−1) = a′n}, which is
1
2

.
The probability of stopping at the step n or m, starting at any point before an−1 and am−1 is the

probability of the union of two boxes, however they are not independent events (its intersection is not
empty). Hence let B1 = { f | an−1 = a′n} and B2 = { f | am−1 = a′m}. The probability P(B1 ∪B2) =

P((B1 \B2)∪B2) = P(B1 \B2)∪P(B2) = P({ f | an−1 = a′n,am−1 = a′m)+P(B2) =
1
4
+

1
2
=

3
4

.

Finally, the probability of not stopping at all, is the probability of the set S = { f | f (ai) = ai+1 for
i ∈ N}, which is not a box, since there is an infinite number of conditions. It is easy to check that we
need an infinite number of boxes to cover such a set, however we can chose boxes as small as we want

A. Dı́az-Caro & G. Dowek 9

(that is, with a big number of conditions), which makes the infimum of their sums to be 0, and so the
probability of not stopping is, as expected, 0.

In other words, P(S)≤ { f | f (ai) = ai+1, i ∈ [0,n]}= 1
2n , for any n. Hence when n tends to ∞, P(S)

tends to 0.

4 Transforming a non-deterministic into a probabilistic calculus

4.1 The calculus λ+

In [14, 15] we have introduced a non-deterministic calculus called λ+, which is a simplification of an
earlier probabilistic calculus by keeping non-determinism but removing explicit probabilities. Now we
can transform this calculus into a probabilistic one.

The full calculus is depicted in Table 1. Typing judgements are of the form r : A. A term r is
typable if there exists a type A such that r : A. Following [18, 22], we use a presentation of typed
lambda-calculus without contexts and where each variable occurrence is labelled by its type, such as.
λxA.xA or λxA.yB. We sometimes omit the labels when they are clear from the context and write, for
example, λxA.x for λxA.xA. We use different letters for different variables and the type system forbids
terms such as λxA.xB when A and B are different, by imposing preconditions to when the typing rules
apply. Let S = {xA1

1 , . . . ,xAn
n } be a set of declarations, we write S f when this set is functional, that is when

xi = x j implies Ai = A j. For example {xA,yA⇒B} f , but not {xA,xA⇒B} f . Typing rules have the following
structure:

[Preconditions]
Hypotheses

Derived judgement
(Rule name)

The α-conversion and the sets FV (r) of free variables of r and FV (A) of free variables of A are de-
fined as usual in the λ -calculus (cf. [6, §2.1]). For example FV (xAyB) = {xA,yB}. We say that a term r is
closed whenever FV (r) = /0. If FV (r) = {xA1

1 , . . . ,xAn
n }, we write Γ(r) = {A1, . . . ,An}. FV ({A1, . . . ,An})

is defined by
⋃n

i=1 FV (Ai). Given two terms r and s we denote by r[s/x] the term obtained by simulta-
neously substituting the term s for all the free occurrences of x in r, subject to the usual proviso about
renaming bound variables in r to avoid capture of the free variables of s. Analogously A[B/X] denotes
the substitution of the type B for all the free occurrences of X in A, and r[B/X] the substitution in r. For
example, (xA)[B/Y] = x(A[B/Y]), (λxA.r)[B/X] = λxA[B/X].r[B/X] and (πA(r))[B/X] = πA[B/X](r[B/X]).
Simultaneous substitutions are defined in the same way. Finally, terms and types are considered up to
α-conversion.

Each term of the language has a main type associated, which can be obtained from the type annota-
tions, and other types induced by the type equivalences.

The operational semantics of λ+ is also given in Table 1, where there are two distinct relations
between terms: a symmetric relation � and a reduction relation ↪→. We write �∗ and ↪→∗ for the
transitive and reflexive closures of � and ↪→ respectively. In particular, notice that �∗ is an equivalence
relation. We just write→ when we do not want to make the distinction between these relations. We write
n.r in λ+ as a shorthand for r+ · · ·+ r︸ ︷︷ ︸

n times

.

This calculus has a non-deterministic projector. Indeed, the rule “If r : A, then πA(r+ s) ↪→ r” is
not-deterministic because the symbol + is commutative, so if s : A, this rule can produce either r or
s non-deterministically. In any case, both reducts are valid proofs of A, and so the proof system is
consistent. Refer to [14] for details.

10 The probability of non-confluent systems

Grammar of types and terms

A,B,C, . . . ::= X | A⇒ B | A∧B | ∀X .A .

r,s, t ::= xA | λxA.r | rs | r+ s | πA(r) | ΛX .r | r{A} .

Equivalence between types

A∧B ≡ B∧A , (A∧B)∧C ≡ A∧ (B∧C) , A⇒ (B∧C) ≡ (A⇒ B)∧ (A⇒C) .

Rewriting system
Symmetric relation:

r+ s � s+ r , (r+ s)t � rt+ st , If r : A⇒ (B∧C), then
(r+ s)+ t � r+(s+ t) , λxA.(r+ s)� λxA.r+λxA.s , πA⇒B(r)s � πB(rs) .

Reductions:
(λxA.r) s ↪→ r[s/x] , (ΛX .r){A} ↪→ r[A/X] , If r : A, then πA(r+ s) ↪→ r .

Typing system

[A≡B]
r : A
r : B

(≡)
xA : A

(ax)
[(FV (r)∪{xA}) f

]
r : B

λxA.r : A⇒ B
(⇒i) [FV (rs) f]

r : A⇒ B s : A
rs : B

(⇒e)

[FV (r+s) f]
r : A s : B
r+ s : A∧B

(∧i)
r : A∧B
πA(r) : A

(∧e) [X /∈FV (Γ(r))] r : A
ΛX .r : ∀X .A

(∀i)
r : ∀X .A

r{B} : A[B/X]
(∀e)

Table 1: The non-deterministic calculus λ+

4.2 From non-determinism to probabilities (or from λ+ to λ
p
+)

Consider the following example (cf. [15, Example 5]). Two possible reduction paths can be fired from
(ΛX .(πA(xA + yX))){A}: Reducing first the projection, (ΛX .xA){A} ↪→ xA, or reducing first the beta
πA(xA + yA) ↪→ xA. The former path is deterministic and will always reduce to xA, on the contrary, the
latter can non-deterministically chose between xA and yA. However, in both cases a proof of A is obtained.

Hence, the non-determinism is present not only due to the projector, but also by a combination of not
defining a reduction strategy and the polymorphism, which can turn a deterministic projection into a non-
deterministic one. We want to associate a probability to the second case, that is, to the non-deterministic
projector (the π reduction). With this aim, we consider the following ARS, called λ

↓
+. The closed normal

terms of λ+ are objects of λ
↓
+. If r1, . . . ,rn are objects, then it is also an object. The function → is

given by the relations � and ↪→. In particular, if r : A, then πA(r+ r)→ r, with multiplicity 2, i.e.
→ (πA(r+ r),r) = 2.

Theorem 4.1. Let (Ω,A,P) be a probability space over λ
↓
+. Let Bri = { f | f (πA(∑

n
j=1 m j.r j)) = ri} be

a box. Then P(Bri) =
mi

∑
n
j=1 m j

.

Proof. Notice that

ρ(πA(
n

∑
i=1

mi.ri)) = ∑
r
→ (πA(

n

∑
i=1

mi.ri),r) =][r1, · · · ,r1︸ ︷︷ ︸
m1 times

, . . . ,rn, · · · ,rn︸ ︷︷ ︸
mn times

] =
n

∑
j=1

m j

And→ (πA(∑
n
i=1 mi.ri),ri) = mi. Hence, P(Bri) = p(Bri) =

mi
∑

n
j=1 m j

.

A. Dı́az-Caro & G. Dowek 11

Definition 4.2 (The probabilistic calculus λ
p
+). Let λ

p
+ be the language of Table 1, with the following

modification:
Replace rule “If r : A, then πA(r+ s) ↪→ r” by
“For i = 1, . . . ,n, let ri : A and s 6 : A, be closed normal terms. Then

πA(
n

∑
i=1

mi.ri + s) ↪→ ri with probability
mi

∑
n
j=1 m j

” .

Remark 4.3. Notice that by Theorem 4.1 the probabilistic reduction is well defined.

4.3 The calculus Algp
F

The calculus Algp
F is inspired from [5, 24]. We restrict the algebraic calculus to only have probabilistic

superpositions, and we type it with a simple extension of System F (cf. [2, Def. 5.1]). The grammar of
terms ensures that the linear combinations of terms are probability distributions, however the type system
allows typing pseudo-terms, that is, terms that are not probability distributions. A term in this language,
is a term produced by the grammar of terms, and typed. The full calculus is depicted in Table 2.

Grammar of types

A,B,C, . . . ::= X | A⇒ B | ∀X .A .

Grammar of pseudo-terms

r,s, t ::= xA | λxA.r | rs | ΛX .r | r{A} | p.r | r+ s

Grammar of terms

r,s, t ::= xA | λxA.r | rs | ΛX .r | r{A} |
n

∑
i=1

pi.ri with

n > 0,
pi ∈Q(0,1] and
∑

n
i=1 pi = 1

Rewriting system
Symmetric relation:

r+ s � s+ r , (r+ s)t � rt+ st , 1.r � r .
(r+ s)+ t � r+(s+ t) , λxA.(r+ s)� λxA.r+λxA.s ,

Reductions:
Beta Elementary Factorisation

(λxA.r) s ↪→ r[s/x] , p.q.r ↪→ pq.r , p.r+q.r ↪→ (p+q).r .
(ΛX .r){A} ↪→ r[A/X] , p.(r+ s) ↪→ p.r+ p.s ,

Typing system

xA : A
(ax)

[(FV (r)∪{xA}) f
]

r : B
λxA.r : A⇒ B

(⇒i) [FV (rs) f]
r : A⇒ B s : A

rs : B
(⇒e)

[FV (r+s) f]
r : A s : A

r+ s : A
(+i)

r : A
p.r : A

(pi) [X /∈FV (Γ(r))] r : A
ΛX .r : ∀X .A

(∀i)
r : ∀X .A

r{B} : A[B/X]
(∀e)

Table 2: The algebraic calculus Algp
F .

12 The probability of non-confluent systems

4.4 From Algp
F to λ

p
+

We give a translation from the probabilistic calculus Algp
F , including scalars, to the probabilistic calculus

λ
p
+.

JxAK = xA JrsK = JrKJsK Jr{A}K = JrK{A}
JλxA.rK = λxA.JrK JΛX .rK = ΛX .JrK J∑

n
i=1

ni

di
.riK = πA(∑

n
i=1 mi.JriK)

where ri : A,di ∈ N∗,mi = ni(
n
∏
k=1
k 6=i

dk), for i = 1, . . . ,n.

Example 4.4. Let r : A, t : A and s : A. J
3
4
.r+

1
8
.t+

1
8
.sK = πA (192.JrK+32.JtK+32.JsK). By Theo-

rem 4.1, this last term reduces to JrK with probability 192
192+32+32 = 3

4 , to JtK with probability 32
192+32+32 =

1
8 , and to JsK with probability 32

192+32+32 = 1
8 .

Lemma 4.5. JrK[JsK/x] = Jr[s/x]K.

Theorem 4.6. If r→∗ ∑
n
i=1 pi.ti, with ti in Algp

F , with ∑
n
i=1 pi = 1 and JtiK→∗ si, then JrK→∗ si with

probability pi
(
∑

n
j=1 p j

)−1 in λ
p
+.

Proof. Let r : A in Algp
F . For i = 1, . . . ,n, assume pi =

ni

di
with ni,di ∈N∗. We proceed by a case analysis

on the last reduction step to reach ∑
n
i=1 pi.ti. We only give two cases as example.

• If r = ∑
n
i=1 pi.ti, then πA(∑

n
i=1(∏

n
k=1
k 6=i

dkni).JtiK)→∗ πA(∑
n
i=1(∏

n
k=1
k 6=i

dkni).s′i) By Theorem 4.1, this

term reduces in one step to s′i with probability

∏
n
k=1
k 6=i

dkni

∑
n
i=1

(
∏

n
k=1
k 6=i

dkni

) =

ni

di

∑
n
i=1

ni

di

 .

(
∏

n
k=1 dk

∏
n
k=1 dk

)
= pi

(
n

∑
j=1

p j

)−1

.

• Consider (λxA.r) s ↪→ r[s/x], with r[s/x] = ∑
n
i=1 pi.ti. Then J(λxA.r) sK = (λxA.JrK) JsK ↪→

JrK[JsK/x] which, by Lemma 4.5, is equal to Jr[s/x]K = J∑
n
i=1 pi.tiK and this, by definition is equal

to πA

(
∑

n
i=1(∏

n
k=1
k 6=i

dkni).JtiK
)

. We conclude with Theorem 4.1.

4.5 Back from λ
p
+ to Algp

F

The inverse translation is given by

LxAM = xA LrsM = LrMLsM Lr{A}M = LrM{A}
LλxA.rM = λxA.LrM LΛX .rM = ΛX .LrM Lr+ sM = LrM+ LsM
If πA(t) ↪→ si with probability pi, for i = 1, . . . ,n, LπA(t)M = ∑

n
i=1 pi.LsiM

Remark 4.7. This translation does not admit translating a term of the form πA(t) in normal form. More-
over, let Π be the rule “πA⇒B(r)s � πB(rs) with r : A⇒ (B∧C)”, then the translation keep reductions,
except for the one using rule Π, as expressed in Theorem 4.9.

Lemma 4.8. LrM[LsM/x] = Lr[s/x]M.

A. Dı́az-Caro & G. Dowek 13

Theorem 4.9. Let r,s,si in λ
p
+.

• If r � s, then LrM � LsM.

• If r ↪→ s, with probability 1, then LrM ↪→ LsM, except if the reduction is done by rule Π.

• If r ↪→ si with probability pi, for i = 1, . . . ,n, then LrM = ∑
n
i=1 pi.LsiM.

Proof. Case by case analysis. We only give three cases as example.

• Consider (r+ s)t � rt+ st. Notice that L(r+ s)tM = (LrM+ LsM)LtM � LrMLtM+ LsMLtM = Lrt+ stM.

• Consider (λxA.r)s ↪→ r[s/x]. Notice that L(λxA.r)sM = (λxA.LrM)LsM ↪→ LrM[LsM/x], and this, by
Lemma 4.8, is equal to Lr[s/x]M.

• Consider πA(∑
n
i=1 mi.ri + s) ↪→ ri with probability mi

∑
n
j=1 m j

, where ri : A and s6 : A are closed normal

terms. Notice that, by definition, LπA(∑
n
i=1 mi.ri + s)M = ∑

n
i=1

mi
∑

n
j=1 m j

.LriM.

5 Conclusion

In this paper we have defined a probability space on the execution traces of non-confluent abstract rewrite
systems. We define a sample space on strategies deciding the rewrite to apply at each state (cf. Defini-
tion 2.2).

Our main motivation has been to be able to use this probability space in non-deterministic calculi,
hence being able to encode a probability superposition of the kind α.t+β .r, with α +β = 1, as a term
having probability α of rewriting to t and probability β of rewriting to r. As an example, we provided
such an encoding from an algebraic calculus into a non-deterministic calculus.

References
[1] Suzana Andova (1999): Process Algebra with Probabilistic Choice. In Joost-Pieter Katoen, editor: Formal

Methods for Real-Time and Probabilistic Systems, Lecture Notes in Computer Science 1601, pp. 111–129,
doi:10.1007/3-540-48778-6 7.

[2] Pablo Arrighi & Alejandro Dı́az-Caro (2012): A System F Accounting for Scalars. Logical Methods in
Computer Science 8(1:11), doi:10.2168/LMCS-8(1:11).

[3] Pablo Arrighi, Alejandro Dı́az-Caro & Benoı̂t Valiron (2012): A Type System for the Vectorial Aspects of
the Linear-Algebraic Lambda-Calculus. In Elham Kashefi, Jean Krivine & Femke van Raamsdonk, editors:
Developments in Computational Models, Electronic Proceedings in Theoretical Computer Science 88, pp.
1–15, doi:10.4204/EPTCS.88.1.

[4] Pablo Arrighi, Alejandro Dı́az-Caro & Benoı̂t Valiron (2013): The Vectorial Lambda-Calculus. Available at
http://www.diaz-caro.info/TheVectorialCalculus.pdf. (Submitted).

[5] Pablo Arrighi & Gilles Dowek (2008): Linear-algebraic λ -calculus: higher-order, encodings, and con-
fluence. In Andrei Voronkov, editor: Rewriting Techniques and Applications, Lecture Notes in Com-
puter Science 5117, pp. 17–31, doi:10.1007/978-3-540-70590-1 2. Available at http://arxiv.org/abs/
quant-ph/0612199.

[6] Henk Barendregt (1984): The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam.
[7] John J. Benedetto & Wojciech Czaja (2009): Integration and Modern Analysis, chapter Lebesgue Measure

and General Measure Theory. Birkhiäuser Advanced Texts Basler Lehrbücher, Birkhäuser Boston.
[8] Gérard Boudol (1994): Lambda-Calculi for (Strict) Parallel Functions. Information and Computation 108(1),

pp. 51–127, doi:10.1006/inco.1994.1003.

http://dx.doi.org/10.1007/3-540-48778-6_7
http://dx.doi.org/10.2168/LMCS-8(1:11)
http://dx.doi.org/10.4204/EPTCS.88.1
http://www.diaz-caro.info/TheVectorialCalculus.pdf
http://dx.doi.org/10.1007/978-3-540-70590-1_2
http://arxiv.org/abs/quant-ph/0612199
http://arxiv.org/abs/quant-ph/0612199
http://dx.doi.org/10.1006/inco.1994.1003

14 The probability of non-confluent systems

[9] Olivier Bournez & Mathieu Hoyrup (2003): Rewriting Logic and Probabilities. In Robert Nieuwenhuis,
editor: Rewriting Techniques and Applications, Lecture Notes in Computer Science 2706, pp. 61–75,
doi:10.1007/3-540-44881-0 6. Available at http://hal.inria.fr/inria-00099620.

[10] Antonio Bucciarelli, Thomas Ehrhard & Giulio Manzonetto (2012): A Relational Semantics for Parallelism
and Non-Determinism in a Functional Setting. Annals of Pure and Applied Logic 163(7), pp. 918–934,
doi:10.1016/j.apal.2011.09.008. Available at hal.inria.fr:inria-00628887.

[11] Ugo de’Liguoro & Adolfo Piperno (1995): Non Deterministic Extensions of Untyped λ -calculus. Information
and Computation 122(2), pp. 149–177, doi:10.1006/inco.1995.1145.

[12] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro & Adolfo Piperno (1998): A filter model for concurrent
λ -calculus. SIAM Journal on Computing 27(5), pp. 1376–1419, doi:10.1137/S0097539794275860.

[13] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2005): Probabilistic λ -Calculus and Quantitative
Program Analysis. Journal of Logic and Computation 15(2), pp. 159–179, doi:10.1093/logcom/exi008.

[14] Alejandro Dı́az-Caro & Gilles Dowek (2013): Non determinism through type isomorphism. In Delia Kesner
& Petrucio Viana, editors: Logical and Semantic Frameworks, with Applications, Electronic Proceedings in
Theoretical Computer Science 113, pp. 137–144, doi:10.4204/EPTCS.113.13.

[15] Alejandro Dı́az-Caro & Gilles Dowek (2013): Normalisation of a non-deterministic type isomorphic λ -
calculus. Available at http://www.arxiv.org/abs/1306.5089. (Submitted).

[16] Alejandro Dı́az-Caro, Giulio Manzonetto & Michele Pagani (2013): Call-by-value non-determinism in a
linear logic type discipline. In Sergei Artemov & Anil Nerode, editors: Logical Foundations of Computer
Science, Lecture Notes in Computer Science 7734, pp. 164–178, doi:10.1007/978-3-642-35722-0 12.

[17] Alejandro Dı́az-Caro & Barbara Petit (2012): Linearity in the non-deterministic call-by-value setting. In
Luke Ong & Ruy de Queiroz, editors: Logic, Language, Information and Computation, Lecture Notes in
Computer Science 7456, pp. 216–231, doi:10.1007/978-3-642-32621-9 16. Available at http://arxiv.
org/abs/1011.3542.

[18] Herman Geuvers, Robbert Krebbers, James McKinna & Freek Wiedijk (2010): Pure Type Systems with-
out Explicit Contexts. In Karl Crary & Marino Miculan, editors: Logical Frameworks and Meta-
languages: Theory and Practice, Electronic Proceedings in Theoretical Computer Science 34, pp. 53–67,
doi:10.4204/EPTCS.34.6.

[19] Oltea Mihaela Herescu & Catuscia Palamidessi (2000): Probabilistic Asynchronous π-Calculus. In Jerzy
Tiuryn, editor: Foundations of Software Science and Computation Structures, Lecture Notes in Computer
Science 1784, pp. 146–160, doi:10.1007/3-540-46432-8 10. Available at http://arxiv.org/abs/cs/
0109002.

[20] Ugo Dal Lago & Margherita Zorzi (2012): Probabilistic operational semantics for the lambda calculus.
RAIRO - Theoretical Informatics and Applications 46(03), pp. 413–450, doi:10.1051/ita/2012012. Available
at http://arxiv.org/abs/1104.0195.

[21] Michele Pagani & Simona Ronchi Della Rocca (2010): Linearity, non-determinism and solvability. Funda-
mental Informaticae 103(1–4), pp. 173–202, doi:10.3233/FI-2010-324.

[22] Jonghyun Park, Jeongbong Seo, Sungwoo Park & Gyesik Lee (2013): Mechanizing Metatheory without
Typing Contexts. Journal of Automated Reasoning, doi:10.1007/s10817-013-9287-4.

[23] TeReSe (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge
University Press.

[24] Lionel Vaux (2009): The algebraic lambda calculus. Mathematical Structures in Computer Science 19(5),
pp. 1029–1059, doi:10.1017/S0960129509990089. Available at http://hal.archives-ouvertes.fr/
hal-00379750.

http://dx.doi.org/10.1007/3-540-44881-0_6
http://hal.inria.fr/inria-00099620
http://dx.doi.org/10.1016/j.apal.2011.09.008
hal.inria.fr:inria-00628887
http://dx.doi.org/10.1006/inco.1995.1145
http://dx.doi.org/10.1137/S0097539794275860
http://dx.doi.org/10.1093/logcom/exi008
http://dx.doi.org/10.4204/EPTCS.113.13
http://www.arxiv.org/abs/1306.5089
http://dx.doi.org/10.1007/978-3-642-35722-0_12
http://dx.doi.org/10.1007/978-3-642-32621-9_16
http://arxiv.org/abs/1011.3542
http://arxiv.org/abs/1011.3542
http://dx.doi.org/10.4204/EPTCS.34.6
http://dx.doi.org/10.1007/3-540-46432-8_10
http://arxiv.org/abs/cs/0109002
http://arxiv.org/abs/cs/0109002
http://dx.doi.org/10.1051/ita/2012012
http://arxiv.org/abs/1104.0195
http://dx.doi.org/10.3233/FI-2010-324
http://dx.doi.org/10.1007/s10817-013-9287-4
http://dx.doi.org/10.1017/S0960129509990089
http://hal.archives-ouvertes.fr/hal-00379750
http://hal.archives-ouvertes.fr/hal-00379750

Submitted to:
DCM 2013

c© M. Quispe-Cruz & E.H. Haeusler
This work is licensed under the
Creative Commons Attribution License.

Proof-graphs for Minimal Implicational Logic

Marcela Quispe-Cruz
Informática PUC-Rio, Rio de Janeiro, Brazil

mcruz@inf.puc-rio.br

Edward Hermann Haeusler
Informática PUC-Rio, Rio de Janeiro, Brazil

hermann@inf.puc-rio.br

It is well-known that the size of propositional classical proofs can be huge. Proof theoretical stud-
ies discovered exponential gaps between normal or cut free proofs and their respective non-normal
proofs. The aim of this work is to study how to reduce the weight of propositional deductions. In this
sense, we present the formalism of proof-graphs for purely implicational logic, which are graphs of
a specific shape that are intended to capture the logical structure of a deduction. The advantage of
this formalism is that formulas can be shared resulting in the reduced proof.

In this paper, we give a precise definition of proof-graphs for the classical→-fragment, together
with a normalization procedure for these proof-graphs.

1 Introduction

The use of DAGs (Directed Acyclic Graphs), instead of trees or lists, for representing proofs is getting
popular among proof-theoreticians. DAGs serve as a way to provide a better symmetry to the semantic
of proofs ([6]), and a way to study complexity of propositional proofs and to provide more efficient
theorem provers, concerning size of propositional proofs. In [1], one can find a complexity analysis of
the size of Frege systems, Natural Deduction systems and Sequent Calculus concerning their tree-like
and list-like representation. They show a O(nlog(n)) improvement in the size of the tree-like proof with
respect to list-based proofs. The fact that hypothesis occurs only once in lists and more than that in
trees contribute for this size relationship. On the other hand, investigations on the use of DAGs in [3],
[2] and [4] show that the use of DAGs together with mechanisms of unification/substitution in proof
representation have a compacting factor equivalent to cut-introduction. Of course, the use of DAGs is
a good alternative to save space by means of reference instead of copying. This article shows a more
interesting and diverse advantage of using DAGs for representing proofs. We show that by using DAGs
for representing formulas and Natural Deduction derivations in the purely implicational minimal logic,
we obtain the (weak) normalization theorem, that is in fact, a strong normalization theorem. The choice
of purely implicational minimal logic (M→) was motivated by the fact that the computational complexity
of the validity of M→ is PSPACE-complete and it can polynomially simulate Classical, Intuitionistic
and full minimal logic ([7]) and any propositional logic with a Natural Deduction system with the sub-
formula property ([5]). This work takes part in the investigation of propositional theorem provers able to
provide short (polynomial) proofs.

In proof theory there are three main properties when studying a structural deductive system (Natural
Deduction, Sequent Calculus, etc):
• Normal form: To each derivation of α from ∆ there is a normal derivation of α from ∆′ ⊆ ∆.

• Normalization: To each derivation of α from ∆ there is a normal derivation of α from ∆′ ⊆ ∆,
obtained by a particular strategy of reductions application.

• Strong Normalization: To each derivation of α from ∆ there is a normal derivation of α from
∆′ ⊆ ∆. This normal form can be obtained by applying reductions to the original derivation in any
ordering.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

16 Proof-graphs for minimal implicational logic

The traditional way to prove the strong normalization property for a natural deduction system is the
so-called semantical method:

• Define a property P(π) on derivations π in the Natural Deduction system;

• Prove that this property implies strong normalization, that is ∀π(P(π)→ SN(π)), where SN(X)
means that X is strongly normalizable;

• Prove that ∀πP(π).

In the literature there are some famous and distinct examples of this property P(X). (1) Prawitz
uses “strong validity”; (2) Tait uses “convertibility”; (3) Jervell uses “regularity”; (4) Leivant defines
“stability”; (5) Martin-Löf defines “computability”; and (6) Girard “candidate de reducibilité”. It is
worth noting that this kind of strategy to prove strong normalization is need in the case of the purely
implicational fragment of minimal logic too. However, these semantical proofs provides no intuition on
the combinatorics behind the strong normalization. Because of this feature, proof-theoreticians searched
alternative combinatorial proofs for the strong normalization theorem. The strategy of showing that
there is a worst sequence of reduction and this sequence always produces a normal derivation is a good
representative of an alternative, and syntactic proof of Strong Normalization.

Other approaches includes assigning quite complicated measures to derivation, proving that reduc-
tions decreases the measure assigned to the reduced derivation and by an inductive argument providing
a proof of strong normalization. In this article we show how to represent M→ derivations in a DAG-like
form; how to reduce (eliminate maximal formulas) the derivation in DAG-like form; and; that by count-
ing the number of maximal formulas in the original derivation, a normalization theorem can be proved.
Strong normalization is then a direct consequence of normalization, since the decrease in the complexity
measure of the derivation is obtained by means of any reduction application. We believe that the intuition
behind our result comes from the fact that our DAG representation of Natural Deduction derivations uses
only one node for any two identical formulas occurring in the original Natural Deduction derivation.
That is, propositional variables must label an unique node in the DAG.

2 Mimp-graphs

Mimp-graphs consist of nodes representing (labelled by) logical constants occurrences, propositional
variables and inference rules (→-I and →-E). The edges serve to connect syntactically these compo-
nents. The edges are labelled with tokens that better identify the connection between the respective rule
nodes and formula nodes. Formulas called formula graph may occur only once in the graph and are
built inductively consisting of formula nodes. Sub-formulas of a formula called formula sub-graphs are
indicated by outgoing edges with labels l (left) and r (right). The different types of formula nodes are
shown in Figure 1.

We have rule nodes that, like rules in Natural Deduction, require the correct number of premises.
Premises of a rule node are indicated by ingoing edges, and the node also has an edge to a conclusion
formula, thus the number of ingoing and outgoing edges should be fixed. The right side of the Figure 1
shows the rule nodes→-I (implication introduction) and→-E (implication elimination). It is important
to note that as consequence of the fact the discharging of hypotheses may be vacuous. This case in a
mimp-graph is represented by a disconnected graph, where the discharged formula node is not linked to
the conclusion of the rule by any directed path.

In the rule nodes, formulas are re-used, which is simply done by putting several arrows towards
it, hence the number of ingoing/outgoing edges with label p (premise), M (major premise), m (minor

M. Quispe-Cruz & E.H. Haeusler 17

Figure 1: Types of formula nodes of the formula graph and types of rule nodes of the mimp-graph

[p]1 [p→ q]2
→-Eq [q→ r]3

→-Er (→-I,1)p→ r
(→-I,3)

(q→ r)→ (p→ r)

⇓ trans

Figure 2: The transition from a natural deduction proof to a mimp-graph

premise) and c (conclusion) coming or going to a formula node should be arbitrary. To make all this a
bit more intuitive we give an example of a mimp-graph in Figure 2, which can be seen as a derivation of
(q→ r)→ (p→ r) from (p→ q). Indices of discarded hypotheses are replaced by an additional edge
that goes marked with the label: disc (discharge).

The formula nodes in the graph (Figure 2) are labelled with propositional letters p, q and r, the
connective →; the rule nodes are labelled with →-E and →-I. The general idea is that there is an
inferential order between rule nodes which gives a logical derivability order to the graph: the formula
node labelled →4, linked to the delimiter node C by an edge labelled conc, is the root node; and the
conclusion of the proof which the graph represents. Besides, the node→1, linked to the delimiter node
H by the edge labelled hyp (hypothesis) in the graph is representing the premise (p→ q).

Now we shall give a formal definition of mimp-graph.

Definition 1. L is the union of three sets of labels types:

• R-Labels is the set of inference labels: {→-In/n ∈ Z}∪{→-Em/m ∈ Z},
• F-Labels is the set of formula labels: {→i /i ∈ N} and the propositional letters {p,q,r, ...}, and

18 Proof-graphs for minimal implicational logic

• E-Labels is the set of edge labels: {l (left), r (right), p (premise), m (minor premise), M (major
premise), c (conclusion), disc (discharge), conc (final conclusion), ass (open assumption)}

• D-Labels is the set of delimiter labels: {H, C}.

Definition 2. Mimp-graph G is a directed graph 〈V, E, L, lV , lE〉 where: V is a set of nodes, E is a set of
edges, L is a set of labels, 〈v ∈ V, t ∈ L, v′ ∈ V〉 such that v is called the source of the edge and v′ the
target, lV is a labelling function from V to L, lE is a labelling function from E to L.

Mimp-graph is defined inductively as follows:

Basis One formula graph G1 with root node αm
1, then the graph G2 = G1 with the delimiter nodes H

and C, and the edges (αm,conc,C) and (H,hyp,αm) is a mimp-graph.

→-E If G1 and G2 are mimp-graphs, and, G1⊕G2
2 contains the edge (→q, l,αm) and the two nodes

→q and αm linked to the delimiter node C then the graph G2 := G1⊕G2 with

1. the removal of the ingoing edges in the node C;

2. a rule node→-Ei at the top level;

3. the edges: (αm,m,→-Ei), (→q, M,→-Ei), (→-Ei,c,βn) and (βn,conc,C) is a mimp-graph (see
the left-hand part of Figure 3).

→-I If G1 is a mimp-graph and contains a node βn linked to the delimiter node C and the node αm

linked to the delimiter node H, then the graph G2 := G1 with

1. the removal of the edges to (βn,conc,C) and (H,hyp,αm);

2. a rule node→-I j at the top level;

3. a formula node→t linked to the delimiter node C by an edge (→t ,conc,C);

4. the edges: (→t , l,αm), (→t ,r,βn), (βn, p,→-I j), (→-I j, c,→t), and (→-I j, disc,αm) is a mimp-
graph (see the right-hand part Figure 3; the αm-node is discharged).

→-I-v 3 If G1 is a mimp-graph, and G is a formula graph with root node αm, and G1 contains a node
βn linked to the delimiter node C , then the graph G2 := G1⊕G with

1. the removal of the edges to (βn,conc,C);

2. a rule node→-I j at the top level;

3. a formula node→t linked to the delimiter node C by an edge (→t ,conc,C);

4. the edges: (→t , l,αm), (→t ,r,βn), (βn, p,→-I j), (→-I j, c,→t), and (→-I j, disc,αm) is a mimp-
graph.

Lemma1 enables us to prove that a given graph G is a mimp-graph without explicitly supplying a
construction. Among other things, basically says that we have to check that each node of G is of one of
the possible types that generate the Basis,→-E,→-I and→-I-v construction cases of Definition 2.

Lemma 1. G is a mimp-graph if and only if the following hold:

1. There is an inferential order > in all rule nodes of the mimp-graph,

2. Every node N of G is of one of the following six types:

1We will use the terms αm, βn and γr to represent the principal connective of the formula α , β and γ respectively.
2The operation G1⊕G2 collapses into one the nodes of the graph G1 with the nodes of G2 that have the same label, and

collapses edges with the same source, target and label into one.
3the v stands for vacuous, this case of the rule→-I discharges a hypothesis vacuously

M. Quispe-Cruz & E.H. Haeusler 19

Figure 3: The rules→-E and→-I of mimp-graphs

L N is labelled with one of the propositional letters: {p, q, r, ... } indexed or not. N has not
outgoing edges l and r. N has at least one outgoing edges with label p, m or M; or it has at
least one ingoing edges with label c or disc. And it has at most one ingoing edges with label
l or r.

F N has label →n and has exactly two outgoing edges with label: l and r. N has at least one
outgoing edges with label p, m or M; or it has at least one ingoing edges with label c or disc.
And it has at most one ingoing edges with label l or r.

E N has label→-Ei and has exactly one outgoing edge (→-Ei, c, βn), where βn is a node type L
or F. N has exactly two ingoing edges (αm,m,βn) and (→q,M,→-Ei), where αm is a node
type L or F. There are two outgoing edges from the node→q: (→q, l,αm) and (→q,r,βn).

I N has label →-I j, has one outgoing edges (→-I j, c,→t), and at most outgoing edge (→-
I j,disc,αm). N has exactly one ingoing edge: (βn, p,→-I j), where βn is a node type L or
F. There are two outgoing edges from the node→t: (→t , l,αm) and (→t ,r,βn).

H N has label H and has only outgoing edges hyp.

C N has label C and has exactly one ingoing edge conc.

Proof. ⇒: By induction on the construction of mimp-graph (Definition 2). For every construction case
for mimp-graphs we have to check the three properties stated in Lemma. Property (2) is immediate.
For property (1), we know from the induction hypothesis that there is an inferential order > on rule
nodes of the mimp-graph. In the construction cases →-I, →-I-v or →-E, we make the new rule node
that is introduced highest in the >-ordering, which yields an inferential ordering on rule nodes. In the
construction case→-E, when we have two inferential orderings, >1 on G1 and >2 on G2. Then G1⊕G2
can be given an inferential ordering by taking the union of >1 and >2 and in addition putting n > m for
every rule node n,m such that n ∈ G1,m ∈ G2.
⇐: By induction on the number of rule nodes of G. Let > be the topological order that is assumed

to exist. Let n be the rule node that is maximal w.r.t. >. Then n must be on the top position. When we
remove node n, including its edges linked (if n is of type I) and the node type C is linked to the premise of
the rule node, we obtain a graph G′ that satisfies the properties listed in Lemma. By induction hypothesis
we see that G′ is a mimp-graph. Now we can add the node n again, using one of the construction cases
for mimp-graphs: Basis if n is a L node or F node,→-E if n is an E node,→-I if n is an I node.

20 Proof-graphs for minimal implicational logic

3 Normalization for mimp-graph

In this section, we define the normalization procedure for mimp-graph which is based on traditional
normalization mechanism given by Prawitz. Thus a maximal formula in mimp-graphs is a→-I followed
by a→-E of the same formula graph (see Definition 3). This is the same concept of maximal formulas
that exists in natural deduction derivations. That is, a formula occurrence that is the consequence of an
application of an introduction rule and major premise of an application of an elimination rule. Here we
only consider that derivations are represented by DAGs. We want to eliminate such maximal formula by
removing of nodes and edges that are involved in the maximal formula. However, it could also happen
that between the rule nodes→-I and→-E there are several other maximal formulas.

Definition 3. A maximal formula m in a mimp-graph G (see Figure 4) is a sub-graph of G consisting of:

1. the formula nodes αm, βn,→q and the rule node→-Ii,

2. the edges: (→q, l,αm), (→q, r,βn), (βn, p,→-Ii), (→-Ii,c,→q),
(→-Ii,disc,αm), (αm,m,→-E j), (→q,M,→-E j) and (→-E j,c,βn),

3. the rule node→-E j at the top level.

Figure 4: Maximal formula in mimp-graphs

Definition 4. (1) For ni ∈V , a p-path in a proof-graph is a sequence of vertices and edges of the form:

n1
l1−→ n2

l2−→ ...
lk−2−−→ nk−1

lk−1−−→ nk, such that n1 is a hypothesis formula node, nk is the conclusion formula
node, ni alternating between a rule node and a formula node. The edges li alternate between two types of
edges: the first is l j ∈ {m,M, p} and the second l j ∈ {c}. (2) A branch is an initial part of a p-path which
stops at the conclusion formula node or at the first minor premise whose major premise is the conclusion
of a rule node.

Definition 5. Given a mimp-graph G with a maximal formula m, eliminating a maximal formula is the
following transformation of a mimp-graph, where we have two cases to consider:

Case 1: The maximal formula m holds the following requirements:

1. The formula node→q has several ingoing edges or at least an edge (→-Ii,c,→q);
2. There is an edge (→q,M,→-E j), and→q is not premise of another rule node;
3. If a branch (see Definition 4) will be separated from the inferential order this branch must

be insertable in the following branch, according to the order, i.e. the conclusion of this
separated branch is the premise in the following branch.

M. Quispe-Cruz & E.H. Haeusler 21

The elimination of a maximal formula is the following operation on a mimp-graph (see Figure 5):
1. If the edge (→-Ii,c,→q) is the only ingoing edge to→q then remove the edges to and from

the formula node→q, and the formula node→q.
2. Remove the edges to and from the rule nodes→-Ii and→-E j.
3. Remove the nodes→-Ii and→-E j.
4. If a branch is separated from the inferential order, we insert this branch in the following

branch, according to the order.

Figure 5: Case 1 of the elimination of a maximal formula in mimp-graphs

Case 2: The maximal formula m holds the following requirements:
1. Between the rule nodes→-I and→-E there are other maximal formulas.
2. The formula node→q has several ingoing edges or at least an edge (→-Ii,c,→q).
3. There is an edge (→q,M,→-E j), and, the formula node→q is the premise of zero or more of

another rule nodes.
4. If a branch will be separated from the inferential order this branch must be insertable in the

following branch, according to the order, i.e. the conclusion of this separated branch is the
premise in the following branch.

The elimination of a maximal formula is the following operation on a mimp-graph (see Figure 6,
the dotted arrows are representing sets of edges):

1. Eliminate the maximal formulas between the rule nodes→-I and→-E.
2. Finally eliminate this maximal formula.

Note that the removal of a node →-I generated by case →-I-v, in the Definition 2, disconnects the
graph meaning that the sub-graph hypotheses linked, by the edge m, to eliminated node→-E is no longer
connected to the delimiter C.

22 Proof-graphs for minimal implicational logic

Figure 6: Case 2 of the elimination of a maximal formula in mimp-graphs

Let us show in Figure 7 an instance of this case of eliminating a maximal formula in tree form. Note
that this case shows the reason why essentially our (weak) normalization theorem is directly a strong
normalization theorem. The formula β → γ is not a maximal formula before a reduction is applied
to eliminate the maximal formula α → (β → γ). This possibility of having hidden maximal formulas
in Natural Deduction is the main reason to use more sophisticated methods whenever proving strong
normalization. In mimp-graphs there is no possibility to hide a maximal formula. In this graph β → γ is
already a maximal formula. If α→ (β→ γ) is chosen to be eliminated, by the mimp-graph normalization
procedure, its reduction eliminates the β → γ too. On the other hand, the choice of β → γ to be reduced
only eliminates itself. In any case the number of maximal formula decreases.

We shall construct the normalization proof for mimp-graphs. This proof is guided by the normal-
ization measure. That is, the general mechanism from the proof determines that a given mimp-graph G
should be transformed into a non-redundant mimp-graph by means of applying reduction steps and at
each reduction step the measure must be decreased. The normalization measure will be the number of
maximal formulas in the mimp-graph.
Theorem 1 (Normalization). Every mimp-graph G can be reduced into a normal mimp-graph G′, where
the hypotheses and the conclusion of G are the same as G′.

Proof. This characteristic of preservation of the premises and conclusions of the derivation is proved
naturally. Through an inspection of each elimination of maximal formula is observed that the reduction
step (case 1 and case 2 of the Definition5) of the mimp-graph does not change the set of premises and
conclusions (indicated by the delimiter nodes H and C) of the derivation that is being reduced.

In addition, the demonstration of this theorem has two primary requirements. First, we guarantee
that through the elimination of maximal formulas in the mimp-graph, can not generate more maximal

M. Quispe-Cruz & E.H. Haeusler 23

Π2

β

Π1
α

[β]v[α]u

Π0
γ

v
β → γ

u
α → (β → γ)

β → γ

γ

B

Π2 Π1

β α

Π0
γ

⇓ trans

Figure 7: Eliminating a maximal formula in a natural deduction proof and its mimp-graph translation

formulas, it is a finite process. The second requirement is to guarantee that during the normalization
process, the normalization measure adopted is always reduced.

The first requirement is easily verifiable through an inspection of each case in the elimination of
maximal formulas. Thus, it is observed that no case produces more maximal formulas. The second
requirement is established through the normalization procedure and demonstrated through an analysis
of existing cases in the elimination of maximal formulas in mimp-graphs. To support this statement,
it is used the notion of normalization measure, we adopt as measure the number of maximal formulas
Nmax(G).

Normalization Process
We know that a specific mimp-graph G can have one or more maximal formulas represented by

M1, ...,Mn. Thus, the normalization procedure is described by the following steps:

1. Choosing a maximal formula represented by Mk.

2. Identify the respective number of maximal formulas Nmax(G).

3. Applying the respective case of eliminating maximal formula in Mk.

4. In this application one of the following three cases may occur:

24 Proof-graphs for minimal implicational logic

a) The maximal formula is removed.
b) The maximal formula is removed but the formula node is maintained, hence Nmax(G) is de-

creased;
c) All maximal formulas are removed.

5. We repeat this process until the normalization measure Nmax is reduced to zero and G becomes a
normal mimp-graph.

Since the process of the eliminating a maximal formula on mimp-graphs always ends in the elimina-
tion of at least one maximal formula, according to the case where the maximal formula is situated, and
ends with the decrease in the number of vertices of the graph, we can say that this normalization theorem
is directly a strong normalization theorem.

4 Conclusions

With this representation of a proof in mimp-graph get less nodes than the tree and the list representation
of proofs. For the case of lists, it is enough to observe that a sub-formula of a formula is already in
any graph representation of it. If both take part in the proof the size is smaller than in the mentioned
representations. The ability to represent any Natural Deduction proof is preserved. Another important
advantage of a compact representation of graphs is that it allows to deduce some structural properties of
proof-graphs, for example based on a mimp-graph, it is easy to see an upper bound in the length of the
reduction sequence to obtain a normal proof. It is the number of maximal formulas.

References
[1] Maria Luisa Bonet & Samuel R. Buss (1993): The Deduction Rule and Linear and Near-Linear Proof Simu-

lations. Journal of Symbolic Logic 58(2), pp. 688–709.
[2] Vaston Gonçalves da Costa (2007): Compactação de Provas Lógicas. Ph.D. thesis, DI, PUC–Rio.
[3] M. Finger (2005): DAG Sequent Proofs with a Substitution Rule. In: We will show Them – Essays in honour

of Dov Gabbay 60th birthday, Kings College Publications 1, Kings College, London, pp. 671–686.
[4] L. Gordeev, E. H. Haeusler & V. G. Costa (2009): Proof compressions with circuit-structured substitutions.

Journal of Mathematical Sciences 158(5), pp. 645–658.
[5] E.H. Haeusler (2013): A proof-theoretical discussion on the mechanization of propositional logics. Electronic

Proceedings in Theoretical Computer Science Vol. 113, pp. 7-8.
[6] Anjolina Grisi de Oliveira & Ruy J. G. B. de Queiroz (2003): Geometry of deduction via graphs of proofs. In:

Logic for concurrency and synchronisation, Kluwer Academic Publisher, pp. 3–88.
[7] R. Statman (1974): Structural Complexity of Proofs. Stanford University.

Submitted to:
DCM 2013

c© P.J.L. Cuijpers
This work is licensed under the
Creative Commons Attribution License.

Prefix Orders as a General Model of Dynamics

P.J.L. Cuijpers
Department of Mathematics and Computer Science

Eindhoven University of Technology
p.j.l.cuijpers@tue.nl

1 Introduction

Whenever I am confronted with a new type of dynamical system, one of the the first questions that arises
is: ”how does this system behave?” Also, any book that studies the dynamics of a computational system,
a control system, a physical system, a biological system, etc., starts by defining in some way ”what the
executions of such a system look like.” As an example, in automata and process theory, executions are
described as runs over a transition system [5], while in control theory, executions are usually functions
of time to some variable-space [6]. In hybrid and cyber-physical systems theory, these two notions have
been combined by defining time as a mix of continuous and discrete steps [1].

The notion of ‘a set of executions’ appears to be crucial in the study of dynamical systems, and while
executions are often defined as functions of time, there is still much debate on what an appropriate notion
of ‘time’ is. For me, this was a reason to see if I could characterize the essential properties of a set of
executions without considering the notion of time. Admittedly, the word ‘essential’ is biased towards
process theory in this case, for in this paper I generalize the notion of execution of a dynamical sys-
tem in such a way that computer-science notions like implementation, refinement, specification, parallel
composition and branching bisimulation are still defined in a natural way.

Using category theory as a compass, I start by formally defining my ’object of study’ in the next
section. I give axioms that characterize the idea of a ‘prefix order’ on executions, and use this idea as
a basis throughout the remainder of the paper. In the subsequent sections, I propose different ‘structure
preserving maps’ to characterize the different notions from computer science mentioned above.

In this paper, I only develop a very basic theory of dynamics. Admittedly, this may raise more
questions than it answers, and many possible continuations for research impose themselves immediately.
In the concluding section, I sketch a number of these directions for future research in which I expect the
proposed generalization will be useful.

2 Prefix Orders

In [2, 3] the notion of branching bisimulation between processes is studied on runs over a transition
system, rather than directly on the transition systems themselves. The authors show that, after unfolding
a transition system into its set of executions, branching bisimulation can be characterized using relations
that are forward- and backward- bisimulation relations. It was observed in [3] that the resulting definition
of bisimulation only uses the notion of ‘prefix’ on the runs, rather than requiring a notion of ‘silent-steps
followed by a single observable step’. This observation becomes important when developing a notion of
bisimulation that works for arbitrary types of execution, in which a notion of ’next step’ does not always
exist. Moreover, the subsequent sections show that just capturing the notion of prefix order on executions
in an order theoretic fashion already gives us a very flexible general model of dynamics.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

26 Prefix Orders

In literature, the notion of ‘prefix’ is often defined using some notion of time. An execution is then
defined as a function e : [0, t]→ X from some interval [0, t] over time to a set X , and another execution
f : [0, t ′]→X is a prefix of e if t ′≤ t and for all τ ∈ [0, t ′] it holds that e(τ)= f (τ). This notion of prefixing
leads to an order relation on executions, which on closer inspection satisfies the following axioms.

Definition 1 (Prefix order) A prefix order 〈U,�〉 consists of a set of executions U and a prefix relation
�⊆ U×U that is:

• reflexive: ∀a∈U a� a;

• transitive: ∀a,b∈U a� b ∧ b� c ⇒ a� c;

• anti-symmetric: ∀a,b∈U a� b ∧ b� a ⇒ a = b;

• downward total: ∀a,b,c∈U (a� c ∧ b� c) ⇒ (a� b ∨ b� a);

In this definition, only the downward totality is special; the other three requirements simply say that
prefixing is a partial order in the classical sense. Downward totality means that, although the future of
a system may be branching from a given point of execution, the past is always totally ordered. In [4],
this is called the perfect recall property of executions: at any point of execution the complete history
of the system so far is remembered. Another way of looking at it, is saying that the set of executions
behaves like a tree structure, except that it may be dense (in continuous systems there is no ’next’ point
of execution), there may be no root (in some systems history is infinite), and there may be multiple trees
next to each other (for example because there are multiple initial states to consider).

Two important notions on a prefix order are the future and the history of an execution.

Definition 2 (History and future) Given a prefix order 〈U,�〉 and an execution u ∈ U, the history and
future of u are defined by

• history: u− , {v ∈ U | v� u};

• future: u+ , {v ∈ U | u� v};

A map f : U→ V between two prefix orders is then

• order preserving if: ∀u,u′∈U u� u′ ⇒ f (u)� f (u′);

• history preserving if: ∀u∈U f (u−) = f (u)−;

• future preserving if: ∀u∈U f (u+) = f (u)+;

with the obvious lifting f (A), { f (a) | a ∈ A} of f to subsets A⊆ U.

Incidentally, the well-known idea of ‘computation trees’ as executions (see e.g. [2, 3]) is obtained by
studying only prefix orders in which each history is a finite set, while the idea of ‘initial states’ at which
a system is turned on is captured by studying only prefix orders in which each history has a minimum.
Furthermore, one should note that any history or future preserving function is also order preserving.

3 Bisimulations as history and future preserving surjections

In this section, the previously mentioned result of [2, 3], capturing branching bisimulation using futures
and histories, is generalized to prefix orders. However, in contrast to [2, 3], I do not use a relational
definition of branching bisimulation here, but a definition using spans (as proposed by [7]).

P.J.L. Cuijpers 27

Definition 3 (Labeled transition system) A labeled transition system is a tuple 〈X ,A, i,→〉, consisting
of a set of states X, a set of observables A, an initial state i ∈ A, and a transition relation→⊆ X × (A∪
{τ})×X with the unobservable τ 6∈ A. Given a∈ A∪{τ} I write x a→ x′ for (x,a,x′)∈→ and x0

a
� xn+1

whenever there exists a sequence x0 . . .xn+1 such that xi
τ→ xi+1 for every i < n and xn

a→ xn+1.

Definition 4 (Run) A run over a labeled transition system 〈X ,A, i,→〉 is a sequence ρ ∈ ((A∪{τ})×
X)∗ such that, if ρ is not empty, it holds that i

ρ1(0)→ ρ2(0) and ρ2(n)
ρ1(n+1)→ ρ2(n+ 1) for all n+ 1 ∈

dom(ρ). The set of all runs is denoted R(→), is prefix ordered in the usual way, and is observed by a
function π : R(→)→ A∗ defined recursively as π(ε) = ε , π(ρ · τ) = π(ρ), and π(ρ ·a) = π(ρ) ·a, for
a ∈ A.

Definition 5 (Branching Bisimulation) Two labeled transition systems 〈X ,A, i,→1〉 and 〈Y,A, j,→2〉
are branching bisimilar if there exists a relation R ⊆ X×Y such that iR j and

• if xRy, and x a→1 x′, then either a = τ and x′Ry, or there exist y′,y′′ such that y
τ

�2 y′ and
y′ a→2 y′′ and xRy′ and x′Ry′′;

• if xRy, and y a→2 y′, then either a = τ and xRy′, or there exist x′,x′′ such that x
τ

�1 x′ and
x′ a→1 x′′ and x′Ry and x′′Ry′.

Theorem 1 Two labeled transition systems 〈X ,A, i,→1〉 and 〈Y,A, j,→2〉 are branching bisimilar if and
only if there exists a prefix order 〈U,�〉 and span (f ,g) of history and future preserving (surjective) maps
f : U→ Runs(→1) and g : U→ Runs(→2) such that π(g(u)) = π(f (u)) for every u ∈ U.

Note that the requirement that f and g are history and future preserving implies that they are surjective
whenever their domains have a single minimum (i.e. a single initial state). However, I would like to
propose the above theorem as an alternative definition for branching bisimulation in the future, and on
arbitrary prefix orders surjection is not guaranteed while I feel a complete refinement should be surjective
(thus guaranteeing that all initial states are related whenever there is more than one).

In the next section, I will argue that history preserving maps model refinements of a specification.
As a consequence, the above theorem may be interpreted as: two specifications are branching bisimilar
if and only if they have a common refinement. In other words, branching bisimulation is a way to define
that two specifications are ‘consistent’ with each other.

The definition of bisimulation using spans is flexible, and can easily be adapted for multiple ‘views’
by considering systems that have multiple labels. For example, one can treat the observation of time
and of actions separately in a system with timed runs. This separation of concerns is more difficult to
achieve using the traditional definition. On the negative side, the notion of bisimulation through history
and future preserving spans does not coincide in general with the notion of bisimulation through history
and future preserving relations as proposed in [2, 3]. For certain pathological prefix orders (such as the
‘negative natural numbers’ −N and the ‘negative countable ordinals −Ω) a history and future preserving
relation exists (−N×−Ω) while there cannot exist a span of history and future preserving surjections. As
I like the ‘common refinement’ interpretation of branching bisimulation, I vote for the more restrictive
definition using spans in this paper.

4 Refinements as history preserving maps

In the previous section, I discussed maps that are both history and future preserving. However, the
idea that elements of a prefix order represent executions puts more emphasis on the past than on the

28 Prefix Orders

future. Even more strongly, the next theorem shows that the history of an execution in fact contains all
information about that execution.

Theorem 2 Any prefix order 〈U,�〉 is isomorphic to the prefix order 〈U−,⊆〉, with U− = {u− | u ∈ U}.
I.e. there exists a bijection f : U→ U− such that f and f−1 are order preserving (and consequently
history and future preserving).

In itself, this already justifies the study of history preserving maps as a category. But further justifica-
tion can be found in the observation that a history preserving map f : U→V models how each execution
of U maps to a (more abstract) execution in V. At every point of execution in U, f tells you exactly
where the system is in V, thus showing how U is a refined version of the behavior in V. Indeed, this re-
finement may not be complete. Therefore, the history preserving maps are suitable to describe arbitrary
refinements, while surjective history and future preserving maps describe complete refinements. In the
category of history preserving maps, notions like parallel composition and disjoint union arise naturally.

Definition 6 (Product) Given a family of prefix-orders {〈Ui,�i〉 | i ∈ I} a joint execution is a set of
tuples H ⊆∏i∈I Ui, modeling a history of concurrent points of execution (synchronous or interleaving),
with a maximum: ∃h∈H∀i∈I Hi = h−i , and no crossings: ∀h,g∈H (∀i∈I hi �i gi)∨ (∀i∈I gi �i hi).
(Here ∏ denotes the usual Cartesian product on sets, hi denotes the i’th element in a tuple h, and
Hi = {hi | h ∈ H} lifts this to sets of tuples.)

The parallel composition of this family, is the set ‖i∈I Ui of all joint executions, ordered by the relation
v, defined for all G,H ∈‖i∈I Ui by G v H ⇔ G ⊆ H ∧ ∀h∈H∀g∈G(∀i∈I hi �i gi)⇒ (h ∈ G). Together
with the parallel composition, the family {πi : (‖ j∈I U j)→Ui} of canonic projections is given by πi(H)=
max(Hi) for every i ∈ I and H ∈‖ j∈I U j.

Theorem 3 The parallel composition of a family of prefix orders coincides with the categorical product
in the category of history preserving maps.

Definition 7 (Disjoint union) Given a family of prefix-orders {〈Ui,�i〉 | i ∈ I} the disjoint union is the
disjoint union on sets:

⊎
i∈I Ui = {(i,u) | i ∈ I ∧ u ∈ Ui}. This set is ordered by the relation v, defined

by (i,u)v (j,v) ⇔ i = j ∧ u� v, and equipped with a family {ιi : Ui→
⊎

j∈I U j} of canonic insertions
given by ιi(u) = (i,u) for all i ∈ I and u ∈ Ui.

Theorem 4 The disjoint union of a family of prefix orders coincides with the categorical co-product of
this family in the category of history preserving maps.

Finally, combining the two categories in the tradition of process algebra, branching bisimulation
using spans turns out to be a congruence with respect to the two constructs discussed above.

Theorem 5 If there exists a span of history and future preserving surjections between prefix orders U
and V, then for any prefix order X there exists a span of history and future preserving surjections between
U ‖ X and V ‖ X, and between U

⊎
X and V

⊎
X.

5 Discussion and Concluding remarks

I have shown that dynamical systems can be modeled as a set of executions under their natural prefix
ordering, and that history preserving maps represent the refinement of a specification, thus allowing
refinements between various types of dynamics in one unified framework. Furthermore, if refinements
are complete in the sense that all and only specified behavior is refined, then the corresponding maps are
surjective and future preserving.

P.J.L. Cuijpers 29

One of the next steps, is to deal with structured operational semantics in a categorical fashion. Is it
possible to create maps from any operation defined using structured operational semantics to the compo-
nents it depends on? In general, the composition of two systems does not lead to a refinement, so there
will not simply be a history preserving map. For example, the system X

⊎
Y does not have natural maps

back to X and Y. However, there are natural partial history preserving maps from X
⊎
Y to X and Y.

From the point of view of X, the composition X
⊎
Y is a combination of refinement and specification.

The newly specified part is therefore undefined in the map to X, while the refinement is mapped in a
history preserving way. For the study of operational semantics in a category theoretic way, I therefore
expect that partial history preserving maps may be helpful.

Another possible step, is to add more structure to the notion of prefix order, thus becoming less
general but more applicable. Prefix orders really only model the dynamical properties of a system. If one
would like to study timing, continuity, energy, or other properties, an observation map (like the one used
in section 3) is needed. Incidentally, the map used in section 3 is itself a history preserving map, but other
types of maps are conceivable as well. For example, if π : U→ Q and π : V→ Q map the executions
of two systems to some (partially ordered) quantity Q, one could define that U is an over-approximation
of V if there is a history and future preserving surjection f : U→ V such that π(f (u))≤ π(u) for every
u ∈ U. Furthermore, the idea of prefixing is intimately coupled with the notion of concatenation, since
prefixing is also often defined as: x� z iff ∃y x · y = z. It seems therefore reasonable to also study which
semigroups 〈U, ·〉 admit a natural prefix order. Finally, one could also study probabilistic systems by
imposing a measure on the anti-chains of the prefix order, or one could study continuous systems by
making using of the natural interval topology on prefix orders, and consider continuous maps between a
prefix order and some physical variable.

In conclusion, adding observations in order to study different types of dynamical systems is remi-
niscent of the definition of executions as functions of time. Looking back, perhaps I did not succeed in
eliminating the notion of time from our modeling paradigm after all. In stead, one could say I did succeed
in capturing, in an order theoretic way, the notion of a dynamical system as a function of branching time.
Acknowledgements go to Harsh Beohar, Erik de Vink and Ruurd Kuiper for their continuing support.

References
[1] J.M. Davoren & P. Tabuada (2007): On Simulations and Bisimulation of General Flow Systems. In G. Buttazo

A. Bemporad, A. Bicchi, editor: Hybrid Systems: Computation and Control, 10th International Conference,
HSCC 2007, Lecture Notes in Computer Science 4416, Springer-Verlag, pp. 145–158.

[2] R. De Nicola, U. Montanari & F. Vaandrager (1990): Back and forth bisimulations. CONCUR’90 Theories of
Concurrency: Unification and Extension, pp. 152–165.

[3] R.J. van Glabbeek (2001): Current Trends in Theoretical Computer Science; Entering the 21st Century, chap-
ter What is Branching Time Semantics and Why to Use It?, pp. 469–479. World Scientific.

[4] J.Y. Halpern & K.R. O’Neill (2008): Secrecy in Multiagent Systems. ACM Trans. Inf. Syst. Secur. 12, pp.
5:1–5:47, doi:http://doi.acm.org/10.1145/1410234.1410239. Available at http://doi.acm.org/10.1145/
1410234.1410239.

[5] T. Basten J.C.M. Baeten & M.A. Reniers (2010): Process Algebra: Equational Theories of Communicating
Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

[6] J.W. Polderman & J.C. Willems (1998): Introduction to Mathematical Systems Theory: A Behavioural Ap-
proach. Texts in Applied Mathematics 26, Springer-Verlag.

[7] G. Winskel & M. Nielsen (1995): Handbook of logic in computer science (vol. 4). chapter Models for concur-
rency, Oxford University Press, Oxford, UK, pp. 1–148. Available at http://portal.acm.org/citation.
cfm?id=218623.218630.

http://dx.doi.org/http://doi.acm.org/10.1145/1410234.1410239
http://doi.acm.org/10.1145/1410234.1410239
http://doi.acm.org/10.1145/1410234.1410239
http://portal.acm.org/citation.cfm?id=218623.218630
http://portal.acm.org/citation.cfm?id=218623.218630

Submitted to:
DCM 2013

Causal Dynamics of Simplicial Complexes:
the 2-dimensional case

Pablo Arrighi
Université de Grenoble, LIG, 220 rue de la chimie, 38400 Saint-Martin-d’Hères, France

Université de Lyon, LIP, 46 allée d’Italie, 69008 Lyon, France ∗

parrighi@imag.fr

Simon Martiel
Université Nice-Sophia Antipolis, I3S, 2000 routes des Lucioles, 06900 Sophia Antipolis, France †‡

martiel@i3s.unice.fr

We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two
natural constraints: the evolution does not propagate information too fast; and it acts everywhere the
same.

1 Introduction

Various generalizations of cellular automata, such as stochastics [5], asynchronous [10] or non-uniform
cellular automata [6], have already been studied. In [1, 2, 3, 4] the authors, together with Dowek and
Nesme, generalize Cellular Automata theory to arbitrary, time-varying graphs. I.e. they formalize the
intuitive idea of a labelled graph which evolves in time, subject to two natural constraints: the evolution
does not propagate information too fast; and it acts everywhere the same. Some fundamental facts of Cel-
lular Automata theory carry through, for instance these ”causal graph dynamics” admit a characterization
as continuous functions.

The motivation for developing these Causal Graph Dynamics (CGD) was to “free Cellular Automata
off the grid”, so as to be able to model any situation where agents interact with their neighbours syn-
chronously, leading to a global dynamics in which the states of the agents can change, but also their
topology, i.e. the notion of who is next to whom. In [1, 2, 3] two examples of such situations are men-
tioned. The first example is that of a mobile phone network: mobile phones are modelled as vertices of
the graph, in which they appear connected if one of them has the other as a contact. The second example
is that of particles lying on a smooth surface and interacting with one another, but whose distribution
influences the topology the smooth surface (cf. Heat diffusion in a dilating material, or even discretized
General Relativity [11]). CGD seems quite appropriate for modelling the first situation (or at least a
stochastic version of it).

Modelling the second situation, however, is not a short-term perspective. One of the several difficul-
ties we face is that having freed Cellular Automata off the grid, we can no longer interpret our graphs
as a surface, in general. There are, however, a number of formalisms for describing discretized surfaces
which are very close to graphs (Abstract simplicial complexes, CW-complexes. . . [8]). These work by
gluing triangles alongside so as to approximate any smooth surface. Relying upon these formalisms,

∗This work was supported by the French National Research Agency, ANR-10-JCJC-0208 CausaQ grant
†This work was supported by the John Templeton Foundation, grant ID 15619
‡This work was supported by the French National Research Agency, ANR-10-JCJC-0208 CausaQ grant

32 Causal Dynamics of Discrete Surfaces

can we formalize the idea of a labelled discrete surface which evolves in time — again subject to the
constraints that evolution does not propagate information too fast and acts everywhere the same? Can
we achieve this by just modelling each triangle as a vertex, and each gluing of two triangles as an edge,
and then evolve the graph according to a CGD?

Notice that one could argue that simplicial complexes are not the simplest objects one could use
to represent surfaces: planar graphs may seem more natural to some. Our choice is motivated by two
reasons. First, the notion of planar graphs can only be used to represent two-dimensional surfaces, and
would be limitating when generalizing to higher dimensions (see further work). Second, in a planar
graph, the degree of each vertex is not bounded, and thus such graphs would not fit in our model. In
order to change this we would have needed to artificially bound this degree by some constant d and lose
the generality of planar graphs.

This paper tackles the question of how to give a rigorous definition of “Causal Dynamics of Simpli-
cial Complexes”, focussing on the 2D case for now. It investigates whether CGD can be readily adapted
for this purpose, i.e. whether CGD can be “tied up again to discrete 2D surfaces”. It will turn out that
this can be done at the cost of two additional restrictions, i.e. a CGD must be rotation-commuting and
bounded-star preserving in order to be a valid Causal Dynamics of Simplicial Complexes. The first
restriction allows us to freely rotate triangles. The second requirement allows us to map geometrical
distances into graph distances. Both are decidable.

2 Complexes as graphs

Correspondence. Our aim is to define a Cellular Automata-like model of computation over 2D simpli-
cial complexes. For this purpose, it helps to have a more combinatorial representation of these complexes,
as graphs. The straightforward way is to map each triangle to a vertex, and each facet of the triangle to an
edge. The problem, then, is that we can no longer tell one facet from another, which leads to ambiguities
(see Fig. 1 Top row.).

A first solution is to consider 2D coloured simplicial complexes instead. In these complexes, each of
the three facets of a triangle has a different colour amongst {a,b,c}. Now each triangle is again mapped
to a vertex, and each facet of the triangle to an edge, but this edge holds the colours of the facets it
connects at its ends (see Fig. 1 Bottom row.). We recover [1, 2, 3] the following definition.

Definition 1 (Graph) A labeled graph G is given by

• A (at most countable) subset V (G) of V , whose elements are called vertices and where V is the
uncountable set of all possible vertex name.

• A finite set π = {a,b,c}, whose elements are called ports.

• A set E(G) of non-intersecting two element subsets of V (G) : π , whose elements are called edges.
Symbol : stands for the cartesian product. An edge {u : p,v : q} is to be read “There is an edge
linking port p of vertex u and port q of vertex v”.

• A function σ : V (G)→ Σ associating to each vertex v some label σ(v) in a finite set Σ.

The set of labeled graphs with labels in Σ is denoted Gπ,Σ and the set of disks of radius r is denoted Dr
π,Σ.

We similarly define the set of (unlabelled) graphs and denote it Gπ .

This notion of coloured simplicial complex is not so common, however. It is more common to
consider a version of coloured complexes where triangles can rotate freely, i.e. where we can permute
the colours: a for b, b for c, c for a, so that each triangle has a cyclic ordering of its facets but no

P. Arrighi, S. Martiel 33

b
a b

a c
b

c

a

c

b

c

a

↪→ ←↩

↪→ ←↩6=b
a b

a

b

c

c

a

c

c

b

a

a

bc

c

a b

b

a c

c

a b

a

bc

c

a b

b

a c

c

b a

Figure 1: Complexes as graphs. Top row. The straightforward way to encode complexes as graphs is
ambiguous. Bottom row. Encoding coloured complexes instead lifts the ambiguity. However, the fact
that the extreme triangles share one point or not, is less obvious in the graph representation.

a

b c

b

a c

c

ab

a

bc

Figure 2: Complexes, Coloured complexes, Oriented Complexes

privileged facet a. The cyclic ordering is then interpreted an orientation: when two facets are glued
together in the complex, their orientation must be opposed, so that the two adjacent triangles have the
same orientation. This leads to oriented 2D simplicial complexes. Fig. 2 summarizes the three kinds of
2D simplicial complexes we have mentioned. Definition 1 captured 2D coloured complexes as graphs.
How can we capture oriented 2D simplicial complexes as graphs?

We need to define rotations of the vertices of the graphs in a way that corresponds to rotating the
triangles of coloured complexes. Namely, vertex rotations simply permute the ports of the vertex, whilst
preserving the rest of the graph:

Definition 2 (Vertex Rotation) Let pports be some cyclic permutation over {a,b,c}, and plabels be some
bijection from Σ to itself such that p3

labels = id. Let G be a graph and u ∈V (G) one of its vertices. Then
ruG = G′ is such that V (G′) =V (G) and:

• {v : i,w : j} ∈ E(G)∧ v 6= u∧w 6= u⇔{v : i,w : j} ∈ E(G′).

• {u : i,v : j} ∈ E(G)⇔{u : pports(i),v : j} ∈ E(G′).

• σ ′(u) = plabels(σ(u)), whereas σ ′(v) = σ(v) for v 6= u.

(From now on in order to simplify notations we will drop all labels σ(.) ∈ Σ, though all the results of
this paper carry through to labelled graphs.)
Who is next to whom? On the one hand in the world of 2D simplicial complexes, two simplices are
adjacent if they share a point. On the other hand in the world of graphs, two vertices are adjacent if they

34 Causal Dynamics of Discrete Surfaces

share an edge. These two notions do not coincide, as shown in Fig. 1. The Fig. also shows that two
triangles share a point if and only if their corresponding vertices are related by a monotonous path:

Definition 3 (Alternating paths) Let Π = {a,b,c}2. We say that u ∈Π∗ is a path of the graph G if and
only if there is a sequence u of pairs of ports qi pi such that it is possible to travel in the graph according
to this sequence, i.e. there exists v0, . . . ,v|u| ∈ V (G) such that for all i ∈ {0 . . . |u| − 1}, one has {vi :
qi,vi+1 : pi} ∈ E(G), with ui = qi pi. We say that a path u = q0 p0 . . .q|u|p|u| alternates at i = 0 . . . |u|−2
if either pi = qi+1 +1 and pi+1 = qi+2−1, or pi = qi+1−1 and pi+1 = qi+2 +1. A path is k-alternating
if and only if it has exactly k alternations. A path is monotonous if and only if it does not alternate.

Thus distance one in complexes is characterized by the existence of a 0-alternating path. More generally,
distance k+1 in complexes is characterized by the existence of a k-alternating path. Recall that our aim
is to define a CA-like model of computation over these complexes. In CA models, each cell must have
a bounded number of neighbours (or a bounded “star” in the vocabulary of complexes). This bounded-
density of information hypothesis [7] is the first justification for the following restriction upon the graphs
we will consider:

Definition 4 (Bounded-star Graphs) A graph G is bounded-star of bound s if and only if is monotonous
paths are of length less or equal to s.

Notice that the property is stable under rotation. A further justification for this restriction will later be
given.

3 Causal Graph Dynamics

We now provide the essential definitions of CGD, through their constructive presentation, namely as
localizable dynamics. We will not detail nor explain nor motivate these definitions in order to avoid
repetitions with [1, 2, 3]. Still, notice that in [1, 2, 3] this constructive presentation is shown equivalent
to an axiomatic presentation of CGD, which establishes the full generality of this formalism. The bottom
line is that these definitions capture all the graph evolutions which are such that information does not
propagate information too fast and which act everywhere the same.

Definition 5 (Local Rule) A function f : Dr
π → Gπ is called a local rule if there exists some bound b

such that:

• For all disk D and v′ ∈ D, v′ ∈V (f (D))⇒ v′ ⊆V (D).{ε,1, ...,b}.
• For all graph G and all disks D1,D2 ⊂ G, f (D1) and f (D2) are consistent.

• For all disk D and all isomorphism R, f (R(D))=R∗(f (D)), with R∗({u.i,v. j, ...})= {R(u).i,R(v). j, ...}.

Definition 6 (Localizable Dynamics, a.k.a CGD) [1, 2, 3] A function F from Gπ to Gπ is a localizable
dynamics, or CGD, if and only if there exists r a radius and f a local rule from Dr

π to Gπ such that for
every graph G in GΣ,r,

F(G) =
⋃
v∈G

f (Gr
v).

CGD act on arbitrary graphs. To compute the image graph, they can make use of the information
carried out by the ports of the input graph. Thus, they can readily be interpreted as “Causal Dynamics of
Coloured Simplicial Complexes”. But what we are really interested in “Causal Dynamics of Bounded-
star Oriented Simplicial Complexes”, which we will call “Causal Complexes Dynamics” for short.

P. Arrighi, S. Martiel 35

u4 u3 u0 u1 u2
: i :a :b :a :b :a :b :j

u4 u3 u0 u1 u2
: i :a :b :b :a :a :b :j

u3 u0 u1 u2
:b :b :a :a :b :j

u4 u3 u0 u1
: i :a :b :a :b :a

Figure 3: A non-rotation commuting local rule induces a rotation commuting CGD.

4 Causal Complexes Dynamics

This section formalizes Causal Complexes Dynamics (CCD).
Rotation-commutating. First, we will restrict CGD so that they may use the information carried out
by ports, but only as far as it defines an orientation. Formally, this means restricting to dynamics which
commute with graphs rotations.

Definition 7 (Rotation-Commuting function) A function F from Gπ to Gπ is rotation-commuting if and
only if for all graph G and all sequence of rotations r there exists a sequence of rotations r∗ such that
F(rG) = r∗F(G). Such an r∗ is called a conjugate of r. The definition extends naturally to functions
from Dπ to Gπ .

The next question is “When is a CGD rotation-commuting?”. More precisely, can we decide, given
the local rule f of a CGD F , whether F is rotation-commuting? The difficulty is that being rotation-
commuting is a property of the global function F . Indeed, a first guess would be that F is rotation-
commuting if and only if f is rotation-commuting, but this turns out to be false.

Example 1 (identity function) . Consider the local rule of radius 1 over graphs of degree 2 which acts
as the identity in every cases but those given in Fig. 3. Because of these two cases, the local rule
makes use the information carried out by the ports around the center of the neighbourhood. It is not
rotation-commuting. Yet, the CGD it induces is just the identity, which is trivially rotation-commuting.

Thus, unfortunately, some rotation-commuting F can be induced by a non-rotation-commuting f . Yet,
fortunately, any rotation-commuting F can be induced by a rotation-commuting f .

Theorem 1 Let F be a localizable dynamics. F is rotation-commuting if and only if there exists a
rotation-commuting local rule f which induces F.

Proposition 1 (Decidability of rotation commutation) Given a local rule f , it is decidable whether f
is rotation-commuting.

Bounded-star preserving. Second, we will restrict CGD so that they preserve the property of a graph
being bounded-star. Indeed, we have explained in Section 2 that the graph distance between two ver-
tices does not correspond to the geometrical distance between the two triangles that they represent. By
modelling CCD via CGD, we are guaranteeing that information does not propagate too fast with respect
to the graph distance, but not with respect to the geometrical distance. The fact that the geometrical

36 Causal Dynamics of Discrete Surfaces

: a

: b

: a

: b

: a

: b

: a

: b

: a

: b
: c

: b

: c

: b

: c

: b

: c

: b

: c

: b

: a
: b

: a
: b

: a
: b
: a

: b
: a : b : a : b

: a
: b
: a
: b

: a

: b
: a

: b

Figure 4: An unwanted evolution: sudden collapse in geometrical distance. Left column: in terms of
complexes. Right column. In terms of graph representation.

distance is less or equal to the graph distance is falsely reassuring: the discrepancy can still lead to an
unwanted phenomenon as depicted in Fig. 4.

Of course we may choose not to care about geometrical distance. But if we do care, then we must
make the assumption that graphs are bounded-star. This assumption will not only serve to enforce the
bounded-density of information hypothesis. It will also relate the geometrical distance and the graph
distance by a factor s. As a consequence, the guarantee that information does not propagate too fast with
respect to the geometrical distance will be inherited from its counterpart in graph distance. In particular,
it will forbid the sudden collapse phenomenon of Fig. 4. All we need to do, then, is to impose that CCD
take bounded-star graphs into bounded-star graphs. This can be decided from its local rule.

Definition 8 (Bounded-star preserving) A CGD F is bounded-star preserving if and only if for all
bounded-star graph G, F(G) is also bounded-star. A local rule f is bounded-star preserving if and
only if it induces bounded-star preserving a global dynamics F.

Proposition 2 (Decidability of bounded-star preservation) Given a local rule f and a bound s, it is
decidable whether f is bounded-star preserving with bound s.

Conclusion

Summary. We have obtained that the following definition captures Causal Complexes Dynamics, i.e.
evolutions of discrete surfaces such that information does not propagate too fast and that act everywhere
the same:

Definition 9 (Causal Complexes Dynamics) A function F from Gπ to Gπ is a Causal Complexes Dy-
namics, or CCD, if and only if there exists r a radius and f a rotation-commuting, bounded-star preserv-
ing local rule from Dr

π to Gπ such that for every graph G in GΣ,r, F(G) =
⋃

v∈G f (Gr
v).

We have also obtained that given a candidate local rule f , it is decidable whether it as the required
properties. Since CCD are a specialization of CGD, several results follow as corollary from [1, 2, 3].
For instance, it follows CCD of radius 1 are universal, that CCD are composable, that CCD can be
characterized as the set of continuous functions from discrete surfaces to discrete surfaces with respect

P. Arrighi, S. Martiel 37

Figure 5: Complexes, pseudomanifolds, combinatorial manifolds.

to the Gromov-Hausdorff-Cantor metric upon isomorphism classes. These results deserve to be made
more explicit, but they already are indicators of the generality of the model.
Further work. We went constantly back and forth from graph to simplicial complexes, but we have
not formalized this relationship. First: Can every such graph be mapped into a 2D oriented simplicial
complex? On the one hand, it is intuitive that each vertex represents an oriented triangle, and each edge
specifies a unique oriented gluing. On the other hand, we are able to represent a sphere, a cylinder, or
a torus with just two vertices, whereas these need many triangles in the simplicial complex formalism.
Hence the correspondence is to be found with more economical formalisms such as ∆-complexes [8].
Second: Can any 2D oriented simplicial complex be represented by such a graph? We are willingly
limiting ourselves to those complexes that arise as discretizations of 2D manifolds, i.e. combinatorial
manifolds with borders [9]. In the 2D case these are just the complex obtained by gluing triangles
pairwise only and only along their sides (See Fig. 5). In n-dimensions combinatorial manifolds are
harder to characterize, however: the star of every point must be an n-ball. Our bounded-star restriction
will then play a crucial role.

Acknowledgements

The authors would like to thank Christian Mercat and Zizhu Wang for helping them enter the world of
simplicial complexes.

References

[1] P. Arrighi & G. Dowek (2012): Causal graph dynamics. In: Proceedings of ICALP 2012, Warwick, July
2012, LNCS, 7392, pp. 54–66.

[2] P. Arrighi & G. Dowek (2012): Causal graph dynamics (long version). Information & Computation journal,
to appear. Pre-print arXiv:1202.1098.

[3] P. Arrighi & S. Martiel (2012): Generalized Cayley graphs and cellular automata over them. In: Proceedings
of GCM 2012, Bremen, September 2012., pp. 129–143.

[4] P. Arrighi, S. Martiel & V. Nesme (2013): Generalized Cayley graphs and cellular automata over them.
submitted (long version). Pre-print arXiv:1212.0027.

[5] P. Arrighi, N. Schabanel & G. Theyssier (2012): Intrinsic Simulations between Stochastic Cellular Automata.
In: Proceedings of AUTOMATA & JAC 2012, La Marana, Corsica, September 2012. EPTCS, 90, pp. 208–
224.

[6] Alberto Dennunzio, Enrico Formenti & Julien Provillard (2011): Non-Uniform Cellular Automata: classes,
dynamics, and decidability. CoRR abs/1107.5228. Available at http://arxiv.org/abs/1107.5228.

[7] R. Gandy (1980): Church’s thesis and principles for mechanisms. In: The Kleene Symposium, North-
Holland Publishing Company, Amsterdam.

http://arxiv.org/abs/1107.5228

38 Causal Dynamics of Discrete Surfaces

[8] Allen Hatcher (2001): Algebraic Topology. Http://www.math.cornell.edu/ hatcher/AT/ATpage.html.
[9] WB Raymond Lickorish (1999): Simplicial moves on complexes and manifolds. Geometry and Topology

Monographs 2(299-320), p. 314.
[10] Luca Manzoni (2012): Asynchronous cellular automata and dynamical properties. Natural Computing 11(2),

pp. 269–276.
[11] R. Sorkin (1975): Time-evolution problem in Regge calculus. Phys. Rev. D. 12(2), pp. 385–396.

Submitted to:
DCM 2013

Quiz games: a new approach to
information hiding based algorithms in scientific computing

Joos Heintz
University of Buenos Aires, CONICET, Argentina

and University of Cantabria, Spain

Bernd Bank
Humboldt University, Berlin

Luis Miguel Pardo
University of Cantabria, Spain

Andrés Rojas Paredes
University of Buenos Aires

A major progress in effective algebraic geometry was realised by the introduction of elimination al-
gorithms which solve multivariate polynomial equation systems and are based on the idea of representing
polynomials by division–free arithmetic circuits. These algorithms became implemented by the software
package “Kronecker” developed by G. Lecerf (Paris–Versailles). This led to the question whether the
underlying Kronecker algorithm is already optimal for this kind of elimination problems. The main out-
come of this algorithm is the proof that elimination polynomials are “smart to evaluate”. This means that
they admit circuit representations which are of polynomial size in their degree, whereas their representa-
tion by coefficients may grow exponentially in this quantity.

On the other hand one may ask whether Lagrange interpolation of circuit encoded multivariate poly-
nomials admits short circuits for the representation of the output. In the past the authors of this contri-
bution exhibited infinite families of computational examples which show that the Kronecker algorithm
is optimal but leads in worst case to exponential complexity and that the Lagrange interpolation problem
considered above is unfeasible too in worst case.

The aim of this talk is to present a uniform approach to both complexity results extending their
meaning to arbitrary representations of polynomials, beyond the circuit representation. The outcome
concerns algorithms which can be implemented applying commonly accepted rules of object oriented
software engineering for information hiding based programming with abstract data types. We present
two versions of a two party protocol, called “quiz game”, which embodies the informal concept of
information hiding. The first version corresponds to an exact and the second one to an approximative
computation model which is well adapted to numeric calculus.

c© Compagnoni, Giannini, Kim, Milideo, Sharma
This work is licensed under the
Creative Commons Attribution License.

A Calculus of Located Entities

Adriana Compagnoni
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
Adriana.Compagnoni@stevens.edu

Paola Giannini
Computer Science Institute

DISIT, Univ. Piemonte Orientale
Alessandria, Italy

giannini@di.unipmn.it

Catherine Kim
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
ckim@stevens.edu

Matthew Milideo
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
mmiledeo@stevens.edu

Vishakha Sharma
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
vsharma1@stevens.edu

In this paper we define BioScapeL, a stochastic Pi-calculus in 3D-space with abstract locations. It
builds on BioScape by associating with each entity a position in space, which is the barycentre of
its associated shape. The position of an entity instance is programmable. This is similar to the
origin of the affine transformation in Cardelli-Gardner’s 3π . The motivation for such an extension
comes from the need to describe the assembly of configurations such as polymers, oligomers, and
complexes in space, while keeping a high level description where diffusion and confinement remain
part of the semantics of the calculus. In addition to this programmable deterministic translation, we
can specify random translation and scaling. Random translation is not present in 3π , and scaling is
more complex.

1 Introduction
In this paper we define BioScapeL, a stochastic π-calculus in 3D-space with abstract locations. It builds
on BioScape [4] by associating with each entity a geometric transformation of its shape w.r.t. a global
reference system. In particular, we specify translation of the barycentre of the entity, and scaling of its
shape. Translations may have deterministic and random components, which are resolved at simulation
time. Geometric transformations may be programmed when defining the entity behavior. This is similar
to the geometric modeling of Cardelli-Gardner’s 3π calculus, where processes are equipped with affine
transformations. The motivation for such an extension comes from the need to describe systems whose
behavior depends on geometric information and dynamic spatial arrangements of their entities, such as
in assembly of polymers, oligomers, and complexes. Furthermore, diffusion and confinement remain
part of the semantics of the calculus, unlike in 3π , where they are a burden to the programmer.

We introduce the extension of BioScape in two steps. Through an example we show how determin-
istic translation can be specified, and we present, in Section 2 the formalization of BioScapeL. In Section
3, we introduce the changes needed to the syntax and operational semantics of Section 2, in order to
specify random translations and scaling.

A motivating example Microtubules are dynamic tubulin polymers; they are part of the cytoskeleton of
eukaryotic cells, and they form roads on which organelles ride on their way to the cell nucleus. Although
microtubules are hollow and formed with dimers of α and β tubulin, we simplify their structure in
our example. Microtubules are assembled starting from parts, MTPart, where a part is an α-β tubulin
dimer. Microtubules have a start piece MTRight and an end piece MTLeft. Between the right and left
end pieces there are any number of MTMiddle pieces. While the start piece is fixed, microtubules grow
and shrink from the end piece. In order to grow, a new MTPart becomes the new MTLeft, and the old

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

42 A Calculus of Located Entities

val Cytosol:space = cuboid(50.0, 50.0, 30.0) @ <1.0, 2.0, 24.0>

val step = 0.0, r = 1.0

new MTConstruction@0.116,r:chan(chan), MTSend@0.1,r:chan(chan, fl*fl*fl),

MTSendBack@0.1,r:chan{fl*fl*fl}

let MTPart()@Cytosol, step, sphere(1.0) = (new y@0.27,r:chan

do ?MTConstruction(x); MTLeft(x)_this

or !MTConstruction(y); MTRight(y))_this)

and MTRight(rht:chan)@Cytosol, step, sphere(1.0) =

do delay@1.0; MTRight(rht)_this

or ?rht; MTPart()_this

and MTLeft(lft:chan)@Cytosol, step, sphere(1.0) =

do delay@1.0; MTLeft(lft)_this

or delay@0.27; (new z@0.27,r:chan

!MTConstruction(z); MTMiddle(lft,z)_this)

or !lft; MTPart()_this

or ?lft;?MTSend(mdl,v);!MTSendBack(this);MTLeft(mdl)_v

and MTMiddle(rht1:chan, lft1:chan)@Cytosol, step, sphere(1.0) =

do delay@1.0; MTMiddle(rht1, lft1)

or !lft1;!MTSend(rht1,this);?MTSendBack(w);MTPart()_w

run (MTPart()_p1 | MTPart()_p2 | | MTPart()_pN)

Figure 1: Microtubules polymerization

MTLeft becomes an MTMiddle. Similarly the end piece can disassemble making the last MTMiddle
the new MTLeft, and making the old MTLeft a free MTPart. The construction is done using private
channels, similar to the process modeling of actin polymerization of [1], so that only adjacent pieces
share channels.

The BioScapeL program for the microtubules example is shown in Fig. 1. We assume an initial
concentration of N MTPart’s placed in the Cytosol; implemented with a parallel composition of N copies
of MTPart with barycentres p1, · · · , pN. See the run command in the last line of the program.

The behavior of the entity MTPart is defined on the right-hand side of the equal sign. For each part
a new channel is defined with new y@0.27,r, where y is the name of the channel (clearly any part will
have a new name). The stochastic reaction rate of the channel, 0.27, is used in the simulation algorithm
to determines the probability and the reaction time of this synchronization. The radius, r, indicates the
channel scope, that is how close the entities must be to interact on this channel. MTPart can either
do an input on channel MTConstruction, ?MTConstruction(x), or an output on the same channel,
!MTConstruction(y).

Consider MTPart()_p1 | MTPart()_p2, representing a MTPart at location p1, and another at p2.
If the distance between p1 and p2 is at most r, there can be a synchronization on the MTConstruction
channel. The entity MTPart()_p1 sends on channel MTConstruction the channel name y and it be-
comes MTRight(y)_p1, and MTPart()_p2 receives y on channel MTConstruction, binds y to x and
becomes MTLeft(y)_p2 sharing the private channel y with MTRight(y)_p1. The decoration this de-
notes the barycentre of the MTPart from which MTRight or MTLeft evolve. The metavariable this is a
way to get a hold of the runtime position of the generating entity similar to the origin, z, of 3π . In gen-
eral, an entity could be decorated with a position resulting from the evaluation of an expression, such as

Compagnoni, Giannini, Kim, Milideo, Sharma 43

sum of points, or product by a scalar returning a point. Therefore, we are specifying a translation (which
is an affine transformation) of the reference system of the entity (on the right-hand-side of the definition)
from the origin of the reference system of the defined entity (on the left-hand-side of the definition).

The entity MTRight has the simplest behavior: it can just either stay alive with a delay prefix or do
an input action with the (only) MTLeft with which it shares the channel rht and evolve into a MTPart

placed in its original position. This corresponds to disassembling a dimer from the microtubule. Notice
that, in this case there is no information sent on the channel rht.

The entity MTLeft has four alternative behaviours. It can

• stay alive with a delay prefix (first line of the definition); or

• interact with a MTPart by synchronizing on channel MTConstruction (after a delay), and evolve
into a MTMiddle piece with which it shares the private channel z. In other words, the process
MTLeft(y)_p2 | MTPart()_p3 evolves into MTMiddle(y,z)_p2 | MTLeft(z)_p3; or

• interact with a MTRight by synchronizing on their private channel and disassemble; or

• interact with a MTMiddle piece on their private channel, and disassemble.

The last case is the most complex, and we explain it through an example. Assume we have

MTMiddle(y,z)_p2 | MTLeft(z)_p3

where z is private to these two entities. The synchronization on z makes MTMiddle(y,z)_p2 evolve
into !MTSend(y,p2);?MTSendBack(w);MTPart()_w. This entity now can make an output on channel
MTSend sending the channel name y and its position p2. On the other side, with the same synchronization
MTLeft(z)_p3 evolves into ?MTSend(mdl,v);!MTSendBack(p3);MTLeft(mdl)_v, (note that mdl
and v are input parameter, and this is replaced by p3, the position of this MTLeft). The two entities may
interact synchronizing on channel MTSend, so that the first evolves into ?MTSendBack(w);MTPart()_w,
and the second into !MTSendBack(p3);MTLeft(y)_p2 (the input parameter mdl has been replaced
with the channel name y, and v with the position p2). If the two entities interact again synchronizing
on MTSendBack, then MTMiddle(y,z)_p2 evolves into MTLeft(y)_p2, becoming the left end of the
microtubule , and MTLeft(z)_p3 evolves into MTPart()_p3, becoming a free part. The example shows
how positions can be sent on channels, and used to compute the positioning of entities.

2 BioScapeL

The abstract syntax of BioScapeL, which is an extension of BioScape [3], is defined in Fig. 2. This syntax
is a minor variation of the concrete syntax of the example in Fig. 1.

We assume a set of channel names, denoted by a, b, a set of variables, denoted by x, y, and constants
for real numbers, denoted by c, with subscripts or superscripts, if needed. We use the floating-point
representation of real numbers. Points, denoted by the metavariable p, are triples (c1,c2,c3) of real
numbers.

The empty process is 0. (In the concrete syntax there are integers, booleans, strings, etc.) By X(δ)δ ′

we denote an instance of the entity defined by X . The actual parameter of the instance will be the result
of the evaluation of the expression δ . The subscript δ ′, is an expression whose evaluation will give the
position of the barycentre of the shape of the entity X . Triples of floating-point numbers are used to
represent points in 3D space. The metavariable this, in the syntax clause for expressions, denotes the
position of the barycentre of the shape of the entity in which definition the instance of X appears. In
the example of Fig. 1, the instances of MTRight (and MTLeft) on the right-hand-side of the definition
of MTPart() have the subscript this meaning that when MTPart() reduces to MTRight (or MTLeft)

44 A Calculus of Located Entities

P,Q ::= 0 Empty Process

| X(δ)δ Located Entity Instance

| P | Q Parallel Composition

| (νa@r,rad : chan{T}).P Restriction

M ::= π.P [+ M] Choice of Prefixed Process

π ::= delay@r Delay

| !u(δ) Output

| ?u(x) Input

| mov Move

u ::= a | b | · · · | x | y | · · · Identifiers

δ ::= u | c | this | δ1, . . . ,δn | () | δ .i | op(δ) Expressions

v ::= a | b | · · · | c | () | v1, . . . ,vn Expression Values

T ::= chan{T} | fl | T1 ∗ · · · ∗Tn | > Expression Types

D ::= /0 | D,X(x : T) = Mξ ,ω,σ FV(M)⊆ x Entity Definitions

E ::= /0 | E,a@r,rad : chan{T} Channel Declarations

Γ ::= /0 | Γ,X :T | Γ,u:T Type Environment

Figure 2: Syntax of BioScapeL

its barycentre will be in the position were the one of MTPart() was. The process P | Q is the parallel
composition of processes P and Q. By (νa@r,rad : chan{T}).P we define the channel name a with two
parameters r and rad∈ R≥0 within process P; the parameter r is the stochastic rate for communications
through channel a, and rad is the communication radius. The radius is the maximum distance between
processes in order to communicate through channel a, and the reaction rate determines how long it takes
for two processes to react given that they are close enough to communicate. After the colon is the type
of a, which is a channel on which values of type T are sent. In the example of Fig. 1 a pair whose first
component is a channel name and the second a triple of floating-point numbers (a 3D point) is sent on
channel MTSend. Note that, in the syntax of BioScapeL(Fig. 2), if no value is sent on the channel, that is
the channel is only used for synchronization, the type of the channel is chan{>}, whereas in the concrete
syntax it is just chan.

The heterogeneous choice is denoted by M, where π.P [+ M] means π.P | π.P + M. Choices may
have reaction branches and movement branches. The reaction branches are probabilistic (stochastic),
since reactions are subject to kinetic reaction rates, while the movement branches are non-deterministic,
since the movement of instances of entities is always enabled. The prefix π denotes the action that
the process π.P can perform. The prefix delay@r is a spontaneous and unilateral reaction of a single
process, where r is the stochastic rate. The prefix !u denotes output, and the prefix ?u denotes input.
Output on a channel specifies an expression whose value will be sent, and input on a channel specifies
a variable, that will be bound to the value received. In the concrete syntax of Fig. 1, when no value is
sent or received, we just use the channel name, e.g., input and output on channel left in the last two

Compagnoni, Giannini, Kim, Milideo, Sharma 45

lines of the definition of MTLeft. The prefix mov moves processes in space according to their diffusion
rate (ω) (see below). We use standard syntactic abbreviations such as π for π.0. Free variables, FV,
and free channel names, FN, of processes and choices can be defined in the usual way. The input prefix
?u(x), and the restriction νa@ are binders, and define the scope of the variable x and the channel name
a respectively.

Expressions may be channel names, variables, constants, the metavariable this, tuples of expres-
sions, including the empty tuple (), selection of a component (of a tuple), and operators applied to an
actual parameter which is in turn an expression. As already mentioned, the metavariable this denotes
the barycentre of the entity on the left-hand-side of the definition on which the expression occurs. To
define type checking, we assume the existence of a function typeOf such that typeOf(op) = (T1,T2)
says that the operator op takes a parameter of type T1 and returns a value of type T2.

Expression values, are either channel names or (floating-point) constants, or tuples of values, with ()
being the tuple with 0 components. (We write constants for floating-point numbers with the standard dot
notation.) The BioScapeL types, characterizing these values, are:

• channel types, chan{T}, specifying the type, T , of the values sent on them,

• the type of real numbers, fl

• the type of tuples, T1 ∗ · · · ∗Tn, specifying the types, Ti , of the components, and

• >, which is the type of the tuple with 0 components.

We denote by D a global list of definitions. The notation X(x : T) = Mξ ,ω,σ defines entity X with
formal parameter x of type T to be the choice M with geometry ξ ,ω,σ , specifying a movement space ξ ,
a step ω , and a shape σ . The choice M describes the behavior of X with a choice of prefixed processes.
The selection of one of the choices depends not only on the available interactions with other processes,
but also on the available space. The movement space ξ is a shape containing the entity shape that defines
the limit of the possible movements of the entity, so that, X can move within ξ . The step ω ∈ R≥0, is
the distance that X can stir in a movement, and it corresponds to the diffusion rate of X ; σ is the three-
dimensional shape (sphere, cube, etc.) of X , having a barycentre. The movement space for the empty
process 0 is everywhere, the global space, and its movement step is 0. Each entity variable X can be
defined at most once in D, and the free variables of M, must be a subset of the variables x. We also write
X(x) = (π.π ′.P)ξ ,ω,σ as short for X(x) = (π.Y (x))ξ ,ω,σ and Y (x) = (π ′.P)ξ ,ω,σ .

We use E to range over environments of channel name declarations. A channel name a appears at
most once in E, so we consider E up to permutations of channel declarations. The domain of E is the set
of channel names declared in E.

In Fig. 3 we define the rules for the judgements:

• Γ ` δ : T , meaning, in the type environment Γ the expressions δ has type T ,

• Γ ` P � (Γ `M �), meaning, in the type environment Γ the process P (choice M) is well formed,
and

• Γ ` D �, meaning, in the type environment Γ the list of definitions D is well formed.

The rules for expressions are standard; notice that the type of this in rule (TY.THIS) is a triple of floating-
point numbers representing 3D coordinates. An entity instance X(δ)δ ′ is well formed (rule (TY.INST)), if
the actual parameter δ has the type of X in the context, and if the δ ′ has the type of a 3D point. In rules
(TY.OUT) and (TY.IN) the channel identifier u must have a channel type.

Define the type environment corresponding to channel declarations or entity definitions as follows

• env(/0) = /0

46 A Calculus of Located Entities

(TY.ID)
u:T ∈ Γ

Γ ` u : T
(TY.CONST)

Γ ` c : fl
(TY.THIS)

Γ ` this : fl∗fl∗fl

(TY.TUPLE)
Γ ` δi : Ti (1≤ i≤ n)

Γ ` δ1, . . . ,δn : T1 ∗ · · · ∗Tn
(TY.EMPTY)

Γ ` () :>

(TY.SEL)
Γ ` δ : T1 ∗ · · · ∗Tn (1≤ i≤ n)

Γ ` δ .i : Ti
(TY.OP)

typeOf(op) = (T1,T2) Γ ` δ : T1

Γ ` op(δ) : T2

(TY.NIL)
Γ ` 0 �

(TY.INST)
X :T ∈ Γ Γ ` δ : T Γ ` δ ′ : fl∗fl∗fl

Γ ` X(δ)δ ′ �
(TY.PAR)

Γ ` P � Γ ` Q �
Γ ` P | Q �

(TY.RESTR)
Γ,a:chan{T} ` P �

Γ ` (νa@r,rad : chan{T}).P �
(TY.OUT)

u:chan{T} ∈ Γ Γ ` δ : T Γ ` P �
Γ `!u(δ).P �

(TY.IN)
u:chan{T} ∈ Γ Γ,x:T ` P �

Γ `?u(x).P �
(TY.PREF)

Γ ` P �
Γ ` delay@r.P �
Γ ` mov.P �

(TY.CHOICE)
Γ `M � Γ `M′ �

Γ `M + M′ �
(TY.DEFS)

Γ ` D � Γ,x:T `M �
Γ ` D,X(x) = Mξ ,ω,σ �

Figure 3: Well typed expressions, processes, and definitions

• env(E,a@r,rad : chan{T}) = a:chan{T},env(E)

• env(D,X(x : T) = Mξ ,ω,σ) = X :T,env(D)

A BioScapeL program is a well formed sequence of channel and entity declarations followed by an initial
process, which is a parallel composition of entity instances, that is

E, D, X1(v1)p1 | · · · | Xn(vn)pn

such that

env(E),env(D) ` D � and env(E),env(D) ` X1(v1)p1 | · · · | Xn(vn)pn � .

The big-step operational semantics of the expression language is presented in Fig. 4: δ ⇓ v means that
the evaluation of δ produces the value v. The rules are standard, just notice that selection of the i-th
component of a tuple is successful only when the value of the expression to which it is applied has at
least i components.

We can prove that: the evaluation of a well typed expression not containing free variables or the
metavariable this produces a value (of the type of the expression).

To give the semantics of BioScapeL we first define the run-time configurations, their structural equiv-
alence, and then we define the reduction relation, −→ , between them. We call {X(v)}p a located entity.
If σ is the shape of X , and σ ′ the shape of Y , define

Compagnoni, Giannini, Kim, Milideo, Sharma 47

(EXP.CH)
a ⇓ a

(EXP.CONST)
c ⇓ c

(EXP.TUPLE)
δ1 ⇓ v1 · · ·δn ⇓ vn

δ1, . . . ,δn ⇓ v1, . . . ,vn
(EXP.())

() ⇓ ()

(EXP.SEL)
δ ⇓ v1, . . . ,vn 1≤ i≤ n

δ .i ⇓ vi
(EXP.OP)

δ ⇓ v op(v) = v′

op(δ) ⇓ v′

Figure 4: Operational semantics of expressions

(S.LOC)
P≡ Q

{P}p ≡ {Q}p
(S.INST.ENT)

δ ⇓ v (δ ′[p/this]) ⇓ p′

{X(δ)δ ′}p ≡ {X(v)}p′

(S.LOC.PAR)
{P}p | {Q}p ≡ {P | Q}p

(S.LOC.NU)
(νa@r,rad:chan{T}).{P}p ≡ {(νa@r,rad:chan{T}).P}p

(S.NU.COM)
ν1.ν2.A≡ ν2.ν1.A

(S.NU.PAR)
a 6∈ fn(B)

((νa@r,rad:chan{T}).A) | B≡ (νa@r,rad:chan{T}).(A | B)

Figure 5: Structural Equivalence

• Ps(p,X) = {p+q | q ∈ σ} to be the set of point of X positioned at p, and

• dis({X(v)}p,{Y (v′)}p′) for the distance between two located entities, as the minimum of the set
{d(p1, p2) | p1 ∈ Ps(p,σ) ∧ p2 ∈ Ps(p′,σ ′)}, where d(p1, p2) is the euclidean distance between
the points p1 and p2.

Spatial configurations, denoted by A, B, . . . are defined as:

A,B ::= {P}p | A | B | (νa@r,rad).A | {X(v)}p

where P is closed. The spatial configuration {P}p indicates an entity that has its barycentre at p and
whose behaviour is described by the process P. Instead {X(v)}p denotes the entity whose behaviour
is described by the definition of X and has its barycentre at p. This is different from {X(v)δ}p that
represents an unspecified entity positioned at p that evolved into the entity X . The position of X is given
by the evaluation of the expression δ in which the metavariable this is substituted by p.

Structural equivalence on configurations is defined in Fig. 5, where we omit the rules for associativity
and commutativity of | and + and reflexivity, symmetry and transitivity. Parallel composition has neutral
element {0}p for any p. Rule (S.LOC) uses the standard structural equivalence of Pi-calculus processes.
Rule (S.INST.ENT) places entity X(δ)δ ′ into space by instantiating the entity with the actual parameter
resulting from the evaluation of the expression δ , and positioning its barycentre at the point resulting
from the evaluation of the subscript expression δ ′ after substituting the point p (barycentre of the entity
from which X evolved) by this. The well-formedness of processes ensures that the evaluation of δ ′,

48 A Calculus of Located Entities

where this is substituted by p, produces a 3D point. In rule (S.LOC.PAR) the point p is distributed on
the two processes saying that both processes will be located at position p. The rest of the rules deal
with (channel name) restriction, and allow us to bring all the restriction outside the process, renaming if
needed. The notation νi (i = 1,2) is an abbreviation for νai@ri,radi : chan{Ti}.

We say that a spatial configuration A is canonical if it is of the form:

ν1.νm.{X1(v1)}p1 | · · · | {Xn(vn)}pn (1)

The structural equivalence of Fig. 5 allows us to find for any B, a canonical form A such that A≡ B. Note
that in a canonical configuration there are no occurrences of {X(v)δ}p, that is all the entities are located.

A canonical configuration is OK, if all its entities are contained in their respective movement space,
and there are no overlapping entities. In the following, we define the OK predicate.

Definition 2.1. Let A be the canonical configuration ν1.νm.{X1(v1)}p1 | · · · | {Xn(vn)}pn . A is OK if:

• for all i, 1≤ i≤ n, we have that Ps(pi,Xi)⊆ ξi, and

• for all i, j, 1≤ i 6= j ≤ n, we have that Ps(pi,Xi)∩Ps(p j,X j) = /0.

The operational semantics of BioScapeL is given in Fig. 6, by the reduction relation −→ on run-
time configurations of the form, E ` {X1(v1)}p1 | · · · | {Xn(vn)}pn , where all the free channel names of
{X1(v1)}p1 | · · · | {Xn(vn)}pn are in the domain of E. The reduction −→ is defined by the rule (PAR). This
rule uses the auxiliary reductions

r
↪→ and

mv
↪→. Since the spacial configuration B to which A reduces

(E ` A
l
↪→B) may not be a parallel composition of located entities, in order to produce a correct run-

time configuration, we consider a canonical configuration, ν1.νm.D, structurally equivalent to B, in
which D is a parallel of located entities. In the configuration resulting from the reduction, all the channel
definitions corresponding to the restrictions ν1.νm are moved into the channel environment. In so
doing, we assume renaming of the names in the restriction to avoid clashes with channel names already
in the domain of E. In this rule we also check that the configuration produced: D | C is OK, that is, it
is space consistent. The system is stuck if there is no auxiliary rule that can be applied, and after the
reduction the configuration obtained is OK. Therefore, the evolution of systems in BioScapeL produces
configurations in which entities do not overlap, and are confined in their movement space.

We denote the reflexive and transitive closure of −→ with −→∗. The rules of the auxiliary reductions
involve entities, X(v), and entities evolve according to one of the choices in their definitions in D. In the
rules (DELAY), (COM), and (MOVE) there is no check of whether the entities of the resulting process overlap
or whether they are contained in their movement space. These checks are done, as previously said, in the
reduction rule (PAR) where in the premise l is either r or mv.

In the two stochastic rules, (DELAY), and (COM), r is the rate of the synchronization that determines
probability and duration of the reduction. Rule (DELAY) makes the entity X evolve into the process P with
a stochastic rate r. In rule (COM) the entity X(vx) sends on channel a the value va to the entity Y (vy),
and evolves into process P located at px. The entity Y (vy) receives va and evolves into Q in which va

substitutes the variable z located at py. This communication happens on the common channel a if the
located entities {X(vx)}px and {Y (vy)}py are close enough. In particular, to interact on channel a@r,rad,
must be that dis({X(v)}p,{Y (v′)}p′) ≤ rad. For instance rad = 0 means that the two entities must be
in contact to react.

The non-stochastic rule (MOVE) defines movement (Fig. 6). In this rule, rand(ω) returns a random
point whose distance from 〈0,0,0〉 is ω . This prefix mov says that the entity is subject to brownian
motion. The located entity is moved randomly a distance ω from its original position.

Compagnoni, Giannini, Kim, Milideo, Sharma 49

(PAR)
E ` A

l
↪→B B≡ ν1.νm.D canonical D |C OK

E ` A |C −→ E,a1@r1,rad1 : chan{T1}, . . . ,am@rm,radm : chan{Tm} ` D |C

(DELAY)
X(x) = (delay@r.P [+ M])ξ ,ω,σ ∈ D

E ` {X(v)}p
r
↪→{P[v/x]}p

(COM)

X(x) = Mξ ,ω,σ
x ∈ D Mx[vx/x] = (!a(δa).P [+ M]) δa ⇓ va

Y (y) = Mξ ′,ω ′,σ ′
y ∈ D My[vy/y] = (?a(z).Q [+ N])

dis({X(vx)}px ,{Y (vy)}py)≤ rad

E,a@r,rad : chan{T} ` {X(vx)}px | {Y (vy)}py

r
↪→{P}px | {Q[va/z]}py

(MOVE)
p′ = p+rand(ω) X(x) = (mov.P [+ M])ξ ,ω,σ ∈ D

E ` {X(v)}p
mv
↪→{P[v/x]}p′

Figure 6: Reduction Relation

Given a BioScapeL program E, D, X1(v1)p1 | · · · | Xn(vn)pn , the initial configuration of this program
is:

E ` {X1(v1)}p1 | · · · | {Xn(vn)}pn

If {X1(v1)}p1 | · · · | {Xn(vn)}pn is OK, then we can prove that for all E ′ and A such that E ` {X1(v1)}p1 |
· · · | {Xn(vn)}pn −→∗ E ′ ` A, we have that A is OK.

3 Random Translation and Scaling
Consider the case of a bacterium that secretes a hydronium ion (HIon). The language extension discussed
so far will allow us to describe where to locate the HIon, but it will be at a specified location with respect
to the position of the bacterium. Instead we would like to be able to say that it should be at a distance
equal to the sum of the radius of the bacterium and the ion, but in a random direction. To this end,
we decorate entity instances with expressions evaluating to pairs, whose first component is, as before, a
translation point, and the second a number which specifies, as in the rule (MOVE) of Fig 6, a distance from
which we generate a random point. In the fragment of code Fig. 7(a) the barycentre of the instances of
Bac will be in the position of the Bac they evolve from, whereas the the barycentre of the instances of
HIon will be in a random position that is at a distance equal to the sum of the radius of the bacterium and
the ion, from the barycentre of the Bac it evolves from.

As far as the definition of the syntax of this extension, we have to change the typing rule for entity
instances, see rule (TY.INST) of Fig. 3 specifying that the type of δ ′ must be (fl∗fl∗fl)∗fl. Regarding
the semantics we have to change the rule of structural equivalence (S.INST.ENT) that places entities into
space, as follows:

(S.INST.ENT.R)
δ ⇓ v (δ ′[p/this]) ⇓ (p′,c) p′′ = p′+rand(c)

{X(δ)δ ′}p ≡ {X(v)}p′′

We now consider the shape of entities. As it is now, we have a specific shape and always the same
dimension. In order to represent a change in scale a new entity with a smaller or bigger shape would have

50 A Calculus of Located Entities

Bac() =

do mov.Bac()_(this,0)

or delay@0.005.(Bac()_(this,0) | HIon()_(this,rB+rH))

or ...

(a)

Bac() = ... max-size ...

do mov.Bac()_(this.1,0,1.1)

or delay@0.005.(Bac()_(this.1,0,1) | HIon()_(this.1,rB+rH,1))

or delay@0.2.(Bac()_(this.1,rB,0.5) | Bac()_(this.1,rB,0.5))

or

(b)

Figure 7: (a) Random translation and (b) scaling

to be defined. Alternatively, we would like to be able to change the size of the entity using scaling direc-
tives. For instance, consider adding to the previous example of the bacterium the fact that bacteria grow
and divide. So in Fig. 7(b) we add these behaviour, specifying that the bacterium may spontaneously di-
vide into two bacteria of half the size of the original one, and moved apart in random directions a distance
equal to the radius of the shape of the original bacterium, and that movement is associated with a growth
of 10%. We can see that, now to get the barycentre of the enclosing entity, since located entities will be
labelled with a point and a scaling factor we have to select the first component of this. For instance, in
mov.Bac()_(this.1,0,1.1), this.1 refers to the barycentre of the entity it evolved from. We could
also access the scaling factor of this entity with this.2. In the definition of the entity Bact we fix a
maximum growth, max-size.

As far as the syntax of the language is concerned we modify the typing rule for instance of entities,
(TY.INST) of Fig. 3, specifying that the type of δ ′ must be (fl ∗fl ∗fl) ∗fl ∗fl, and the type for this
is (fl∗fl∗fl)∗fl. Moreover the definition of entities becomes: X(x : T) = Mξ ,ω,σ ,µ where µ record
the maximum scaling factor for the entity X .

As already mentioned, the syntax of spatial configurations records in addition to the barycentre of
the shape of the entity also its scaling factor s, that is

A,B ::= {P}(p,s) | A | B | (νa@r,rad).A | {X(v)}(p,s)

In placing entities into space, rule (S.INST.ENT.R), and in the rule for movement (MOVE) we have to scale the
random quantity added to the translated point since this quantity refers to the initial (standard) dimension
of entity X . In rule (S.INST.ENT.R) the scaling factor of the located entity is obtained by multiplying the
scaling factor of the entity from which X evolved by the one specified for X . The new rules replacing
(S.INST.ENT) and (MOVE) are shown in Fig. 8.

Scaling affects the dimension of the shape of entities, and therefore the space occupied by them.
Consequently the definition of OK configuration, and the distance between entities will have to take into
account this fact. In particular, let X(x) = Mξ ,ω,σ ,µ define Sc(s,X) = {s× p | p ∈ σ}, where × is scalar
product. The new definitions are as follows.

Definition 3.1. (i) dis({X(v)}(p,s),{Y (v′)}(p′,s′)) is the minimum of {d(p1, p2) | p1 ∈Ps(p,Sc(s,X))∧
p2 ∈ Ps(p′,Sc(s′,Y))}.

(ii) Let A be the canonical configuration ν1.νm.{X1(v1)}(p1,s1) | · · · | {Xn(vn)}(pn,sn). A is OK if:

Compagnoni, Giannini, Kim, Milideo, Sharma 51

(S.INST.ENT.S)
δ ⇓ v (δ ′[(p,s)/this]) ⇓ (p′,cr,cs)

{X(δ)δ ′}(p,s) ≡ {X(v)}(p′+rand(cr×s),s×cs)

(MOVE.S)
X(x) = (mov.P [+ M])ξ ,ω,σ ∈ D

{X(v)}(p,s)
mv
↪→{P[v/x]}(p+rand(s×ω),s)

Figure 8: Modified rules for random translation and scaling

• for all i, 1≤ i≤ n, we have that Ps(pi,Sc(si,Xi))⊆ ξi,

• for all i, 1≤ i≤ n, we have that si ≤ µi, and

• for all i, j, 1≤ i 6= j ≤ n we have that Ps(pi,Sc(si,Xi))∩Ps(p j,Sc(s j,X j)) = /0.

We can still prove that, starting from an initial configuration we get OK configurations.

4 Related Work and Conclusions
BioScape is a modeling language based on process algebras such as SPiM [7], Kappa [5], Petri Nets [8],
etc. However, these languages lack programmable spatial information. In [1] an extension of SPiM for
displaying geometric information is introduced. However, this is a rather ad hoc extension motivated by
the description of the biological process modelled that is actin polymerization. As already mentioned
in the introduction, the calculus that is closer to BioScapeL is 3π([2]), a geometric process algebra in
which processes are equipped with affine transformations. There are two main differences between
BioScapeL and 3π . First, in BioScapeL we do not consider affine transformations, but just a uniform
scaling in all directions maintaining the barycentre of the entity in its original position, and in addition to
standard translation also a random translation, which is not an affine transformation. Second, and more
important, is the fact that 3π is a low level language that gives absolute control of spatial attributes to
the programmer, while in BioScapeL the programmer specifies species at a higher level, and it has been
designed to program biological and biomaterial processes and their interactions. In [4], it is presented a
fully abstract translation from BioScape to 3π , that could be extended to BioScapeL.

In collaboration with materials scientist Matthew Libera, from Stevens, we are working on the com-
putationally assisted development of antibacterial surfaces. Traditionally biomaterials development con-
sists of designing a surface and testing its properties experimentally. This trial-and-error approach is
limited, because of the resources and time needed to sample a representative number of configurations
in a combinatorially complex scenario. In many cases the design is also aided by computational models
tailored to a specific application. In these cases, there have been successful attempts to identify bioma-
terials with optimal properties [6, 9, 10]. However, developing such dedicated software frameworks is
time consuming, and small modifications in the understanding of the application can lead to significant
and time consuming software changes.

Our proposal consists of designing antibacterial biomaterials from first principles. Using the antibac-
terial effect of individual components, we will computationally design optimally antibacterial surfaces,
which simultaneously promote the growth of healthy tissue. Our model will stochastically assemble
surface blocks whose connectivity will be determined by their antibacterial properties, as well as their
ability to encourage tissue growth, in the same way a child assembles building blocks. These designed
surfaces will then be tested in virtual experiments in the same platform. In order to test these surfaces

52 A Calculus of Located Entities

we will use BioScapeL, where surfaces will be described by a collection of located entities generated by
the surface design process.

The emerging surface patterns with maximal antibacterial effect will be used to design tiling patterns,
which will motivate the design of new biomaterials that will then be tested in wet lab experiments.

References
[1] Luca Cardelli, Emmanuelle Caron, Philippa Gardner, Ozan Kahramanogullari & Andrew Phillips (2009): A

Process Model of Actin Polymerisation. Electr. Notes Theor. Comput. Sci. 229(1), pp. 127–144.
[2] Luca Cardelli & Philippa Gardner (2012): Processes in Space. Theor. Comput. Sci. 431, pp. 40–55.
[3] Adriana Compagnoni, Mariangiola Dezani-Ciancaglini, Paola Giannini, Karin Sauer, Vishakha Sharma &

Angelo Troina (2012): Parallel BioScape: A Stochastic and Parallel Language for Mobile and Spatial Inter-
actions. In: Proceedings 6th Workshop on Membrane Computing and Biologically Inspired Process Calculi,
Newcastle, UK, 8th September 2012, Electronic Proceedings in Theoretical Computer Science 100, pp. 101–
106.

[4] Adriana Compagnoni, Vishakha Sharma, Yifei Bao, Matthew Libera, Svetlana Sukhishvili, Philippe
Bidinger, Livio Bioglio & Eduardo Bonelli (2013): BioScape: A Modeling and Simulation Language for
Bacteria-Materials Interactions. Electronic Notes in Theoretical Computer Science 293(0), pp. 35 – 49.
Proceedings of the Third International Workshop on Interactions Between Computer Science and Biology
(CS2Bio’12).

[5] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer & Walter Fontana (2009): Internal Coarse-graining
of Molecular Systems. Proceedings of the National Academy of Sciences 106(16), pp. 6453–6458.

[6] D. Lacroix, J. A. Planell & P. J. Prendergast (2009): Computer-aided design and finite element modelling
of biomaterial scaffolds for bone tisse engineering. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 367(1895), pp. 1993–2009.

[7] Andrew Phillips & Luca Cardelli (2007): Efficient, Correct Simulation of Biological Processes in the Stochas-
tic Pi-calculus. In: CMSB’07, LNCS 4695, Springer, pp. 184–199.

[8] John W. Pinney, David R. Westhead & Glenn A. McConkey (2003): Petri Net representations in Systems
Biology. Biochem. Soc. Trans. 31(6), pp. 1513–1515.

[9] Jack R. Smith, Agnieszka Seyda, Norbert Weber, Doyle Knight, Sascha Abramson & Joachim Kohn (2004):
Integration of Combinatorial Synthesis, Rapid Screening, and Computational Modeling in Biomaterials De-
velopment. Macromolecular Rapid Communications 25(1), pp. 127–140.

[10] Kyriacos Zygourakis & Pauline A. Markenscoff (1996): Computer-aided design of bioerodible devices with
optimal release characteristics: a cellular automata approach. Biomaterials 17(2), pp. 125 – 135.

To appear in EPTCS.
c© C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az

This work is licensed under the
Creative Commons Attribution License.

Towards Formal Interaction-based Models of
Grid Computing Infrastructures

Carlos Alberto Ramı́rez Restrepo
EISC – Universidad del Valle, Cali, Colombia

Jorge A. Pérez
CITI/DI – FCT - Universidade Nova de Lisboa, Portugal

Jesús Aranda
EISC – Universidad del Valle, Cali, Colombia

Juan Francisco Dı́az Frias
EISC – Universidad del Valle, Cali, Colombia

Grid computing (GC) systems are increasingly used as large-scale machines built on top of a massive
pool of resources (processing time, storage, software) which often span multiple distributed domains.
Users may interact with the grid by concurrently adding new tasks; the grid is expected to assign
resources to tasks in a fair and trustworthy way. These distinctive features of GC systems make
their formal specification and verification a challenging issue. Although prior works have proposed
formal approaches to the specification of GC systems, a precise account of the interaction model
which underlies grid resource sharing has not been yet proposed. In this paper, we describe ongoing
work aimed at filling this gap. Our formal approach relies on (higher-order) process calculi: these
core programming languages for concurrency offer a simple, compositional framework in which the
main grid components can be precisely expressed and potentially reasoned about.

1 Introduction

Context. Grid computing (GC) systems comprise a large pool of computational resources, which are
made available by multiple institutions (administrative domains) to users wishing to execute tasks which
would be hard (or even impossible) to perform in a single administrative domain. This is in sharp contrast
with conventional distributed systems, in which resources are typically owned and controlled by a single
institution. That is, while in distributed systems there is a clear correspondence between system users
and valid resource users, in GC systems an analogous correspondence is less explicit, as resources may
belong to multiple administrative domains. Moreover, a grid user may not correspond to an actual user in
the administrative domains or resources. Yet another point of contrast concerns transparency and security
requirements: while in conventional distributed systems users typically know a priori the resources that
they need use to execute their tasks, in GC systems users may execute tasks without knowing (or being
aware of) the internal structure in the system. GC systems differ also from emerging cloud computing
infrastructures, which focus on offering economies of scale for exploiting virtually unlimited resources,
based on the Software as a Service (SaaS) paradigm. In fact, differently from clouds, GC systems
aim at the efficient execution of computationally intensive tasks, subject to constraints determined by
limitations on resource availability/access. Other notable differences between clouds and grids concern
failure management, resource ownership, and infrastructure transparency [8].

Our Approach. Here we are concerned with specification and verification techniques that support the
design and construction of GC systems. As discussed above, a critical aspect here is that of appropriately
assigning resources to a potentially huge number of user tasks running concurrently. In fact, given the
scale and complexity of GC systems, this task appears a challenging issue from several perspectives. For
this reason, we are interested in formal frameworks that may offer a sound basis for the analysis of the

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

54 Towards Formal Interaction-based Models of Grid Computing Infrastructures

concurrent, interactive behavior that is intrinsic to GC systems. We observe a discrepancy between the
practical adoption of grid infrastructures and the formal methods available to appropriately describe and
support such infrastructures. In particular, little work has addressed the peculiarities of the interaction-
based behavior of GC systems. In this paper, we describe ongoing work aimed at understanding how
process calculi can shed light in this discrepancy. Based on a small set of operators—atomic interac-
tion, sequencing, parallel composition, scoping, recursion—process calculi such as CCS [11] and the
π-calculus [12] have been studied within the concurrency theory community as formal computational
models for describing communicating systems. Their compositional character provides a suitable ba-
sis for developing proof techniques over formal specifications (e.g. behavioral equivalences and type
systems) and for investigating new programming abstractions based on communication.

Our approach to GC systems is based on higher-order process calculi. Roughly speaking, these are
core programming models for concurrency in which the communication of processes (i.e. full programs)
is allowed. This is in contrast to the forms of communication available in calculi such as CCS and the
π-calculus, in which only first-order values (such as booleans, integers, references, or communication
channels) can be exchanged. From a foundational level, higher-order process calculi can be seen as con-
current variants of the λ -calculus. In fact, reduction for process exchange in higher-order process calculi
is reminiscent of usual β -reduction in functional calculi. In our setting, higher-order communication
naturally models the fact that user (sub)tasks —which typically describe complex sequences of compu-
tational behaviors— are exchanged among different grid components in order to achieve their execution.
We rely on the higher-order π-calculus (HOπ) [15]: this is a well-known calculi which enhances the π-
calculus with the ability of communicating processes. Hence, HOπ specifications can abstract forms of
code mobility, therefore allowing for flexibility in descriptions of concurrent communications. Moreover,
proof techniques based on behavioral equivalence are well-understood for HOπ (see, for instance, [16]).

The main contribution of this work is then a formal model of GC infrastructures, with a focus on
the resource assignment facility that is central to them. Our model distills the main GC features infor-
mally discussed in the literature (see, e.g., [6]) and our own exchanges with GC experts. The model is
roughly in two parts: a static component and a dynamic component. As its name suggests, the former
defines the static properties of GC systems: using first-order logic, we identify and formalize a series
of pre-conditions and basic invariants that should hold for GC components. Such a static specification,
however, is quite limited to represent and analyze the concurrent (interleaved) execution sequences due
to possibly many grid users running simultaneously. To remedy this, the dynamic component of our
model, expressed as HOπ processes, describes the dynamics in GC systems by defining the interactions
among its components. Building upon the elements of the static part of the model, the dynamic com-
ponent explicitly represents the main components present in real infrastructures, such as users, tasks,
administative domains, virtual organizations, resources and processes. Moreover, in order to describe
explicitly certain details of GC systems, we also consider user and resource proxies.

While simple, our current model already provides a good basis for specifying more realistic GC sys-
tems and for reasoning about GC correctness properties, by appealing to well-known proof techniques
associated to process calculi. Examples of such properties are authentication and authorization guaran-
tees: they are intended to ensure that users only access and use the administrative domains and resources
for which they can prove their identity/permissions. For example, a user only can access the adminis-
trative domains where she is a member; she may only use resources belonging to such domains. The
use of higher-order process calculi with cryptographic elements [9] may be useful to reason about such
properties. Also, we would like to reason about task termination and resource delivery in the grid setting.
We see the model presented here is an initial step to such analyses, exploiting known results on process
termination and reachability properties for calculi such as CCS [3] and also for variants of HOπ [10, 7].

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 55

Related Work. We believe that our ongoing work already improves on previous attempts for grid for-
malization. We briefly review such works and contrast them with out approach. The π-calculus has been
used in [18, 20, 19] for modeling and analyzing the specific aspects of grid services composition and
workflow. These approaches only model the GC components related to grid services such as resources
and tasks—other components and other aspects of GC dynamics are not taken into account. In contrast,
our model adopts a more comprehensive view of GC systems, including, for instance, key interaction
patterns related to user intervention and the role of user and resource proxies in resource assignment and
task execution. In [13], Abstract State Machines (ASM) are used to give a declarative characterization of
GC systems, offering a formal description of the fundamental attributes that a GC system must support.
The main GC elements are modeled as universes (sets) and the grid behavior is represented using rules
over them. Processes are the only agents considered in this approach; they correspond to the tasks and
user and resource mapping agents. These agents execute the rules over the defined universes. However,
as evolution of GC components is described declaratively, concurrent interactions among GC compo-
nents is not explicitly represented. Also, the model in [13] does not consider the key concept of virtual
organizations and the role of user and resource proxies. Finally, in [1, 4], High Level and Coloured Petri
Nets have been used to describe and analyze the grid architecture and grid workflow. They model a 3-
layer grid architecture and the interaction between GC components in these layers, but this approach does
not consider the role of the virtual organizations, administrative domains, and security requirements—all
of these being central to resource assignment.

Organization. The rest of this paper is organized as follows. Section 2 briefly recalls the main features
of GC systems. In Section 3 we present the syntax and semantics of the higher-order π-calculus. Sec-
tion 4 gives a brief description of our GC formalization, and Section 5 illustrates it via a small example.
Finally, future work is discussed in Section 6. A full description of our process model is available in [14].

2 Grid Computing: A Brief Overview

Grid computing broadly refers to the coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations [6]. Distinctive features of GC systems include requirements of
interoperability and support for heterogeneous and dynamic environments. Other typical requirements
are decentralized control, security, access transparency, scalability, availability, and reconfigurability [6].

Sharing in GC systems not only refers to data and information but also to direct access to all kinds
of resources (computing power, storage, software, data, network), which may be required for executing
complex tasks. Each administrative domain (AD in the following) establishes what resources are shared,
who is allowed to use them, and what are the usage policies. A virtual organization (VO in the following)
is a set of administrative domains defined by such policies. The participants in a VO share resources in a
controlled way in order to cooperate in executing a specific task. VOs vary in their purpose, scope, size,
duration, structure, community, and sociology [6].

In GC systems, users can share or have direct access to resources in a transparent manner—they do
not need to know (or be aware of) what resources they are using, where such resources are physically
located or that they may have failed and have recovered. This transparent access to distributed resources
is achieved through the use of the so-called grid middleware: a software layer that implements the
protocols and services that enable the sharing of heterogeneous resources transparently and provides the
most important functionality required for allowing task execution and establishing of VOs [17]. In this
way, the middleware provides the mechanisms that allow users to use resources in a transparent way,

56 Towards Formal Interaction-based Models of Grid Computing Infrastructures

while satisfying security requirements such as authentication, authorization, delegation and single sign-
on. To this end, the middleware includes user and resource proxies [5]. While a user proxy is an entity
that is given permission to act on behalf of a user for a fixed period of time, a resource proxy serves as
interface between the middleware and a resource, thus simplifying (i) the authentication between user
proxy and the resource and (ii) the mapping between grid users and the local users which are valid in the
resource.

2.1 Grid Resource Assignment Protocol

As our interest is in an interaction-based approach to GC systems, next we present a protocol which de-
scribes the interaction sequence among the main grid components—namely, users, ADs, VOs, resources
and proxies. The protocol is also described as a sequence diagram in Figure 1; it formalizes requirements
and mechanisms which have been described in the literature only informally. Our process calculi model
is then intended to give a precise account of this protocol.

1. A user sends its credentials to a grid node in order to authenticate. In the figure, this step is represented
by the message login(user cred) from User to VO.

2. If the authentication is successful then the user is granted to access the grid. Otherwise, the user must
revise its credentials. In the figure, this step is represented by message ok from VO to User.

3. The authenticated user sends a proxy creation request, and a task with its requirements to the grid
node. The task may be a complex object; in particular, it may be structured in terms of subtasks which
follow some process logic. In the figure, these steps are represented by messages userproxycreation()
(from User to VO), create() (from VO to User Proxy), and request(Task) (from User to VO).

4. The user proxy sends to the grid node the requirements of each subtask. In the figure, this step is
represented by the message submit(reqs,Task′) from User Proxy to VO.

5. The grid node selects an AD in the VO with available resources to satisfy the requirements for the
subtask. This subtask is assigned and sent to such an AD. In the Figure, this step is represented by
messages determineAd(Task′) (inside VO), submitTask(Task′) (from VO to AD), and queue(Task′)
(inside AD).

6. The AD assigns appropriate resources for this subtask according to some scheduling strategy. In the
figure, this step is represented by the message assignRes(Task′) inside AD.

7. The user proxy authenticates into the resource proxies of assigned resources. If the authentication is
successful then the subtask is executed. Otherwise, the subtask is sent back to the grid node. In the
figure, these steps are represented by messages auth res(user cred) (from User Proxy to Resource
Proxy), ok (from Resource Proxy to User Proxy), sendJob() (from Resource Proxy to Resource), and
jobexec() (inside Resource).

8. When the subtask has finished (message f inish(res), from Resource to its Resource Proxy), it is
detected if there are more subtasks (condition Task′ 6= null in the loop). If yes then the result of the
previous subtask is transmitted to the next subtask and the previous subprotocol is executed again
(message submit(reqs,Task′)). Otherwise, if the just executed subtask is the last one, then the result
is stored and the protocol finishes (message store(res) from User Proxy to AD).

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 57

Figure 1 Grid Interaction Protocol

2.2 A Representative GC Scenario

We now describe a small but representative example of a GC system. Depicted in Figure 2, our scenario
draws inspiration from the one discussed in [6]. The scenario contains three actual organizations (ad-
ministrative domains) (denoted d1, d2, and d3) and two VOs (denoted v1 and v2); in the figure, they are
depicted as ovals and rectangles, respectively. VO v1 (blue rectangle) groups participants in an aerospace
design consortium and v2 (lined rectangle) links participants for sharing spare computing cycles. AD d1
is member of both v1 and v2. Also, ADs d1 and d2 participate in v1 and AD d3 participates in v2.

In our scenario, we consider two users, denoted u1 and u2. While u1 belongs to v1, user u2 belongs to
u2. Both u1 and u2 have a task to execute in the grid, denoted Task1 and Task2 in the figure, respectively.
To perform, Task1 requires one resource of type (or descriptor) k1 and one resource of type k2. Similarly,
Task2 requires three resources, distinguished by types k1, k2, and k3.

Resources are located in appropriate ADs: AD d1 owns three resources: r1 (type k1), r2 (type k1), and
r3 (type k1); AD d2 owns two resources: r4 (type k1) and r5 (type k2); and AD d3 owns three resources:

58 Towards Formal Interaction-based Models of Grid Computing Infrastructures

Figure 2 A Representative Grid Scenario: Two users (u1, u2), two VOs (v1,v2), three ADs (d1, d2, d3)

r6 (type k1), r7 (type k2), and r8 (type k8). While resources of d1 are shared by v1 and v2, resources of d2
are available only to v1, and resources of d3 are available only to v2.

3 The Process Model: Syntax and Semantics

In this section, we briefly present the syntax and semantics of the higher-order π calculus [15], written
HOπ in the following. In HOπ , both names (channels) and processes may be passed around by syn-
chronization on names; communication can be thus loosely assimilated to β -reduction in the λ -calculus.
We assume a set of names/channels ranged over x,y,z, . . . and a set of process variables ranged over
X ,Y,Z, We write õ to denote a finite tuple of elements o1, . . . ,ok.

Definition 3.1. The language of HOπ processes is given by the following syntax:

α ::= x(Ũ) | x〈K̃〉
P ::= ∑

i∈I
αi.Pi | P1 | P2 | (ν x)P | if [x = y] then P1 else P2 | D〈K̃〉 | X〈K̃〉

We have two prefixes, ranged over α,α ′, An input prefix x(Ũ) (resp. output prefix x〈K̃〉) denotes
an atomic input action (resp. output action) on a name x. Above, K̃ and Ũ denote tuples of names and
processes, and of names and variables, respectively. Process ∑

i∈I
αi.Pi represents the non-deterministic

choice among prefixed processes αi.Pi. The operational semantics ensures that only one of them will be
executed, discarding the rest. When I = /0 we write 0; when I = |2| we write α1.P1 +α2.P2. Also, we
simply write α to refer the process α.0. Process P1 | P2 stands for the parallel composition of processes
P1 and P2. We write ∏

j∈J
Pj as a shorthand notation for process P1 | . . . | P|J|. Process (νx)P declares the

name x private to process P. That is, the scope of x is P; this scope may be enlarged by communication
to other processes (scope extrusion). The conditional if [x = y] then P1 else P2 is based on equality of
names x and y: if x = y then the process continues as P1; otherwise it continues as P2. By taking inputs

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 59

Figure 3 Reduction semantics for HOπ

(COM)
(. . .+ x(Ũ).P) | (. . .+ x〈K̃〉.Q)−→ P{K̃/Ũ} | Q

(PAR)
P−→ P′

P | Q−→ P′ | Q

(RES)
P−→ Q

(νx)P−→ (νx)Q

(STR)
P≡ P′ P′ −→ Q′ Q′ ≡ Q

P−→ Q

and restriction as binders, notions of free and bound names/variables arise as expected. We identify
process up to consistent renaming of bound names/variables, writing ≡α for this congruence.

One way of specifying infinite process behavior is via parametric definitions. We write D〈K̃〉 to
denote the application of a constant identifier D with parameters K̃. We assume each identifier D has a

unique definition D(Ũ)
de f
= P, where Ũ is composed of all free names or variables in P, i.e. names or

variable which occur out the scope of any binding. Similarly, X〈K̃〉 denotes the application of parameters
K̃ to process variable X .

We endow our process language with a reduction semantics. Intuitively, a reduction P−→Q denotes
a single evolution step from process P to Q, without interaction from its surrounding environment.

Definition 3.2. Reduction, written P−→Q, is the binary relation on HOπ processes defined by the rules
in Figure 3.

The rules in Figure 3 formalize process communication and reduction under parallel composition
and restriction. In rule (COM), notation P{K̃/Ũ} stands for process P in which all free occurrences of
names/variables in Ũ have been substituted by names/processes in K̃. We assume arity in communica-
tions is consistent, i.e., the length of Ũ must be equal to the length of K̃, with one-to-one correspondence
among elements of both tuples. Observe that by means of rule (STR) reduction is closed under a struc-
tural congruence relation, written ≡, which is used to promote process interactions. It is defined as
follows:

Definition 3.3. Structural congruence, written P≡ Q, is the smallest process congruence such that

P | 0≡ P P≡α Q⇒ P≡ Q
P | Q≡ Q | P P | (Q | R)≡ (P | Q) | R
(νx)0≡ 0 x 6∈ f n(P)⇒ P | (νx)Q≡ (νx)(P | Q)

D(Ũ)
def
= P ⇒ D〈K̃〉 ≡ P{K̃/Ũ} (νx)(νy)P≡ (νy)(νx)P

if [x = y] then P1 else P2 ≡ P1 (if x = y) if [x = y] then P1 else P2 ≡ P2 (if x 6= y)
∑
i∈I

αi.Pi ≡ ∑
j∈J

α j.Pj (if J is a permutation of I)

4 A Formal Model of Grid Interaction

We now present our formal model of grid computing systems. As discussed in the Introduction, it is
composed of static and dynamic components. While the static component is given in terms of invariants,
the dynamic part is specified using HOπ processes.

60 Towards Formal Interaction-based Models of Grid Computing Infrastructures

Figure 4 Base sets for GC components
GC Component Base set
Users u ∈U
VOs v ∈V
ADs d ∈ D
Tasks T ∈ T
User Tasks S ∈ S
Resources r ∈ R
Nodes n ∈ N
User Proxies a ∈ A
Resource Proxies x ∈ X
Resource Descriptors k ∈ K
Logs l ∈ L

Static Component: Base Sets and Invariants

To formalize GC systems and their components, we first relate such components to base reference sets.
Then, we state associated invariant properties by defining static predicates over elements of such sets.
Table 4 summarizes our notation for these base sets. The intuitive meaning of most of such sets should be
clear from the description given in Section 2; we distinguish between the definition of tasks (represented
as the base set T) and concrete instances of such tasks which are submitted by the users (called user
tasks in base set S. For each VO we consider a group of access points (nodes) associated to it; these
nodes are represented by the base set N. As for the invariants, based on informal descriptions in the
literature [6], we have identified the elements that we consider essential to GC systems. Using first-order
logic, we formalize such elements in terms of conditions/predicates over the elements of the reference
sets. Examples of such invariants are the following:

− Each user is member of a VO. Using predicate member(u,v), which holds if user u ∈U is member of
VO v ∈V , we then may write this invariant as: ∀u∈U∃v∈V member(u,v).

− Each user has associated one task to execute in the GC system. Using predicate task(u,S), which
holds if user u ∈U is the owner of task S ∈ S, we then write this invariant as: ∀u∈U ,∃S∈S. task(u,S).

− Each resource belongs to an AD. Using predicate belongsTo(r,d), which holds if resource r ∈ R
belongs to AD d ∈ D, we then may write this invariant as: ∀r∈R,∃d∈D. belongsTo(r,d).

− Every AD can participate in one or more VOs. Using predicate participate(d,v), which holds if AD
d ∈D participates into VO v∈V , we then may write this invariant as: ∀d∈D,∃v1,...,vz∈V . participate(d,vi).

There are also invariants concerning access points (nodes), resource descriptors, task states, resource
states, and task logs; they are given in terms of appropriate base sets, and are omitted here for the sake
of space. Finally, we also assume tasks can be built using the next grammar:

T ::= J〈r1, . . . ,rm〉 | T.T | T⊕T | T ‖ T | end
Above, J〈r1, . . . ,rm〉 denotes a basic job J with resources r1, . . . ,rm (m≥ 1). More complex tasks can

be defined via sequential and parallel composition, and via non-deterministic choice. We also assume a
finalization task, denoted end. For simplicity, we assume that each user is associated to a single task.
This is not a limitation, for tasks may involve several subtasks in parallel and sequential composition.

See [14] for a more detailed description of the static component of our model.

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 61

Figure 5 Dynamic model: Correspondence among GC components and processes (full details in [14])

GC Component HOπ Process Intuitive Description
Grid system Grid

ω,µ
δ ,η Represents the whole GC system

User (u ∈U) Ju,SKc̃,y = User(c̃,JSKt,e,y) Models the behavior of u to authenticate
and submit its task S

↪→ UsrMonitor(c̃,g,a,y,P) Monitors tasks submitted by u
Node (n ∈ N) JnKv,y,d̃ = AP(y, d̃) Models the interaction of n with users

to authenticate
↪→ AP-UsrHandler(ch1,ch2,ce) Models the user proxy creation and task

submission
↪→ AP-ProxyHandler(ce, d̃) Represents the interaction with the user task

VO (v ∈V) Composition of instances of AP(y, d̃) A collection of nodes
AD (d ∈ D) JdK = AD(d) Models the AD with its resources, proxy

resources and management elements
↪→ AD-RecReq(b,d) Receives the tasks assigned to the AD and

puts them in the queue
↪→ AD-AsgRes(b,d,ch) Dequeues tasks and assigns

appropriate resources to them
↪→ AD-LRM(s̃, x̃, w̃,ch,d) Supervises the state of resources, and

determines the available resources for a task
Resource (r ∈ R) JrKr,q = AD-Resource(r,q) Models a resource’s behavior when is

used by a task
User Proxy (a ∈ A) JaKce,p,t,g = AP-UserProxy(ce, p, t,g) Models the task management, the request of

execution of subtasks and the authentication
with resource proxies

Res. Proxy (x ∈ X) JxKx,q,r,w = AD-ResourceProxy(x,q,r,w) Acts as a mediator between GC components
and a resource

Log (l ∈ L) AP-Log(gr,gw,st, z̃) Interacts with GC components to register the
changes in the task state and result

Task (T ∈ T) dTet,e definition Represents the behavior of a task
User Task (S ∈ S) JSK = dTet,e Models a task instance corresponding to

a user task
Descriptors (k ∈ K) Names k1, . . . ,kκ Models the different types of resources

Dynamic Component: Model in HOπ calculus

In addition to a static specification of its components, we should provide a dynamic specification that
unambigously shows how the GC system may evolve as a result of the interaction of its components.
In the light of the protocol outlined in Sect. 2, such interactions may follow intricate patterns and must
adhere to basic correctness and trustworthiness criteria. We would like formal mechanisms to ensure that
models indeed satisfy such criteria. As we wish to describe GC systems in a compositional way, clearly
specifying the interacting mechanisms and their relationships, first-order logic is not the most appropri-
ate formalism for this task. We then appeal to specifications expressed as HOπ processes: they offer a
basis on which interaction features in GC systems can be succinctly represented, and potentially verified
using proof techniques associated to HOπ (behavioral equivalences, type systems, etc.). We thus extend
the static description overviewed above so as to define in HOπ the behavior of GC components and
their interactions according to the invariants and predicates of the static representation. Figure 5 sum-

62 Towards Formal Interaction-based Models of Grid Computing Infrastructures

marizes the correspondence between the elements in the static description and their respective process
representation in the dynamic component of the model. In the figure, we use the symbol ↪→ to represent
sub-processes which are triggered as part of the execution of a main process. A complete description of
all the processes mentioned the figure can be found in [14].

In addition to the high-level correspondence in Figure 5, our process model features a correspondence
between some elements in the GC scenario and names in the HOπ calculus. For example, for each
resource r ∈ R there is a name r that corresponds to the access channel to the resource. The same
name also allows to refer directly the resource through such a name in its process representation. The
following table presents the correspondence among GC components in the static description and the
access channels in their process representation:

GC Component Access Channel
ni ∈ N Name yi

dl ∈ D Name dl

r j ∈ R Name r j

x j ∈ X Name x j

Next we briefly describe process representations for some grid components (users, middleware, ADs)
mentioned in Figure 5. We use ω , µ , δ , and η to denote, respectively, the number of VOs, users, ADs,
and nodes (access points) in the system. Also, we rely on standard process representations of queues (and
associated operations). It is worth highlighting that the HOπ representations of the GC components are
related to the invariants and other elements of the static component of the model. This means that process
interactions do not concern arbitrary elements of the base sets, but rather elements which may be subject
to invariants. For example, a user process representation only can interact with the process representation
of a node that corresponds to a VO where such user is member. Often, elements of the process language
are useful to enforce invariants and/or to prevent interactions not valid by static predicates—an example
is the use of fresh channels and scope extrusion in name exchanges. We are currently exploring how to
formally state a correspondence between the invariants in the static description and the reductions of the
dynamic representation (based on HOπ processes).

Grid system. A grid system is modeled as the parallel composition of processes representation of
users, ADs, and access points. These are denoted Ju,SKc̃,y, JdK, and JnKv,y,d̃ corresponding to the pro-
cesses User(c̃,JSKt,e,y), AD(d), and AP(y, d̃), respectively. This structure promotes interaction: while
user processes interact with access point processes through private channels y1, . . . ,yη , AD processes
communicate with access point processes in private channels d1, . . . ,dδ . This way, our process model of
a GC system, parametric on ω , µ , δ , and η , is the following:

Grid
ω,µ
δ ,η

def
= (ν yn1 , . . . ,ynη

)
(
∏
i∈I

Jui,SiKc̃i,ynode(i) | (ν d1, . . . ,d|D|)(∏
h∈H

JnhKvo(nh),ynh ,d̃h | ∏
l∈L

JdlK)
)

where I = {1, . . . ,µ},H = {1, . . . ,η}, and L = {1, . . . ,δ} are index sets over users, access points, and
ADs, respectively. In process User(c̃,JSKt,e,y) (defined below), JSKt,e is a process representation of task
T (S is a instance of T) that depends on names t and e: while t is used to send subtasks requirements to
the appropriate user proxy, e is used to signal task completion. Name d in AD(d) is used for interaction
between the AD and access point processes. In AP(y, d̃), name y is used to interact with user processes,
while d̃ stands for a tuple with the access channel of the ADs in the VO associated to the access point.

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 63

Users. The process model for users, denoted User(c̃,JSKt,e,y), is parametric on a tuple of user creden-
tials c̃, a task process JSKt,e (explained above), and a name y, which is used to access a grid node (an
instance of process AP(y, d̃)). Process User(c̃,JSKt,e,y) interacts with node process AP〈y, d̃〉 in order to
authenticate to the grid, create a user proxy, and submit/monitor her task. More precisely, we have:

User(c̃,JSKt,e,y) def
= (ν u)(y〈c̃,u〉 .u(ch1,−,m).

if [m = ok] then ch1.ch1(a).ch1
〈
JSKt,e〉 .ch1(g).UsrMonitor〈c̃,g,a,y,P〉

else 0)

The first communication on y represents an authentication request against an authentication service
deployed at AP(y, d̃). This service returns name ok (resp. denied) if the authentication is successful
(resp. failed). We write u(ch1,−,m) to denote a reception of three arguments along u, in which the
second one is not relevant. Name ch1 is used for user proxy creation and task submission: proxy creation
is requested by an output signal on ch1; then, a name a (to be used to access the user proxy) is received on
ch1; subsequently, the task can be sent: this is represented by the (higher-order) output prefix ch1〈JSKt,e〉.
Once the task has been sent, a channel associated to the log of the submitted task is received on ch1,
and process UsrMonitor(c̃,g,a,y,P) is launched: it abstracts the user interaction with her access point
for monitoring the task just submitted. The last parameter for UsrMonitor, process P, specifies the user
behavior to be executed upon reception of the outcome of her task.

Middleware. The middleware is represented as the composition of access point processes AP(y, d̃).
For each VO in the grid, there are some instances of access point process associated to it. An instance of
AP(y, d̃) interacts with an instance of User(c̃,JSKt,e,y) for authentication purposes, user proxy creation,
and task submission/monitoring. Then, process AP(y, d̃) launches a process AP-ProxyHandler(ce, d̃),
discussed below, which interacts with the user proxy process.

AP-ProxyHandler(ce, d̃) def
= ce(k̃,m,a,g).(AP-ProxyHandler〈ce, d̃〉 |

(νc,b, f)(∏
di∈ d̃

AP-Searchk̃〈c, f ,di〉 | AP-Acc〈c, f ,b〉 |

b(d1, . . . ,dσ). ∑
j∈1...σ

d j

〈
k̃,m,a,g

〉
))

Process AP-ProxyHandler(ce, d̃) is parametric on (i) name ce, which is used to receive the task re-
quirements from the user proxy process; and (ii) tuple d̃, which contains the names associated to the ADs
of the VO of the access point. Once AP-ProxyHandler(ce, d̃) has received on ce the tuple k̃ which rep-
resents the descriptors of the required grid resources, it selects the appropriate ADs for the requested re-
sources. We abstract this selection by processes AP-SearchK and AP-Acc. Given a tuple/set of resources
descriptors K, each instance of process AP-SearchK searches among the resources shared by an AD with
resources satisfying the requirements in K. Once a suitable AD has been found, AP-SearchK sends the
access channel of that AD to AP-Acc, which records all such access channels. Once all instances of
AP-SearchK have completed the search, AP-Acc sends such ADs to process AP-ProxyHandler(ce, d̃)
along name b. Then, AP-ProxyHandler(ce, d̃) non-deterministically selects an AD.

Administrative domains. As mentioned above, an AD is represented as process AD(d), which con-
sists of the parallel composition of processes in charge of receiving, queuing, and attending task execu-
tion requests. Also, AD(d) comprises process models of resources and resource proxies (see below). For

64 Towards Formal Interaction-based Models of Grid Computing Infrastructures

the sake of space, we only present the process AD-AsgRes(b,d,ch), which is in charge of assigning the
appropriate resources for the subtasks assigned to the AD. Process AD-AsgRes(b,d,ch) is parametric on
channels b,d, and ch: it extracts a request of the queue through channels b and c, and proceeds to attend
it. Then, AD-AsgRes(b,d,ch) interacts with the local resource manager process through channels ch,
ans1, and ans2 in order to determine the resources for the request. If there are available and appropriate
resources for the request then AD-AsgRes(b,d,ch) receives in ans1 the access channels of the resource
proxies and forwards them to the user proxy through name p. Otherwise, if there are no resources then
AD-AsgRes(b,d,ch) receives an input in ans2 and sends back the request to the queue.

AD-AsgRes(b,d,ch) def
= (ν n,c)(b〈n,c〉 .(c(k1, . . . ,kζ ,m, p,g,b′).

(ν o,ans1,ans2)

(ch
〈
k1, . . . ,kζ ,ans1,ans2

〉
.

(ans1(cr1, . . . ,crζ).
p
〈
k1,cr1, ...,kζ ,crζ ,m,o

〉
.AD-AsgRes〈b′,d,ch〉

+

ans2.d
〈
k1, . . . ,kζ ,m, p,g

〉
.AD-AsgRes〈b′,d,ch〉)

| o(X).X)
+ n.AD-AsgRes〈b,d,ch〉))

Observe how also AD-AsgRes(b,d,ch) features higher-order communication in its interaction with
task process JSKt,e. In fact, using a higher-order output on name o (not shown), the task process JSKt,e is
expected to send a job to AD-AsgRes(b,d,ch)—which is denoted by process variable X . As soon as the
reception on o takes place, process AD-AsgRes(b,d,ch) will execute the involved job.

User and Resource Proxies. We represent user proxies as instances of a process which receives the
requirements of the subtasks of the user task process JSKt,e and submits such requirements to an access
point process. Moreover, a user proxy process interacts with process AD-AsgRes(b,d,ch) which sends it
the channels of the resource proxies of assigned resources. Finally, the user proxy process communicates
with resources proxies process in order to authenticate and obtain the direct access to resources. Resource
proxies are abstracted as a process which interacts with its associated resource process and instances of
user proxy process. The interaction with its associated resource process allows the resource proxy to
keep track of the state of the resource, as a resource notifies its proxy when a task has been completed.

Other components. In addition to the components described above, our process models also includes
representations for other components in the GC system, namely logs processes, resource processes, and
queue processes. There is a log process for each user task: it is in charge of registering the current state
and the result of a task. Middleware processes (access points) interact to read the log when the user
process requests it. In fact, processes AP-ProxyHandler(ce, d̃) and AP-UserProxy(ce, p, t,g) interact
with the log process to register a new state and/or the final result. Resource processes abstract the
behavior of actual grid resources. They interact with resource proxy process and task process JSKt,e.
Finally, the queue process is a process representation of a queue structure. There is a queue process for
each AD, which is used to store the subtasks requests of resources assigned to the AD.

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 65

5 Revisiting The Example

We now illustrate our formal model for the illustrative scenario presented in Section 2 (see also Figure 2).
The following table summarizes the base sets for this scenario:

Base Set Description
D = {d1,d2,d3} Administrative domains
U = {u1,u2} Users
V = {v1,v2} Virtual organizations
N = {n1,n2} Grid nodes
R = {r1,r2,r3,r4,r5,r6,r7,r8} Resources
K = {k1,k2,k3} Resource descriptors
T = {T1,T2} Task
S = {S1,S2} User tasks
A = {a1,a2} User proxies
X = {x1,x2,x3,x4,x5,x6,x7,x8} Resource proxies
L = {l1, l2} Logs

M = { f ree,notAvailable,busy} Resource states
W = {inactive,submitted,queued,running, f inished} Task states

For the sake of space, we omit the full description of the static component of the model. Still, the de-
scription of the scenario given in Section 2 should provide an intuitive idea of the key valid relationships
between the main grid components. We only highlight the fact that user tasks S1 and S2 are instances of
tasks T1 and T2, respectively.

As for the dynamic component of the model, we would have the following HOπ process:

Grid
ω,µ
δ ,η = (ν y1,y2)

(
Ju1,S1Kc̃1,y1 | Ju2,S2Kc̃2,y2 |

(ν d1,d2,d3)(Jn1Kv1,y1,d1,d2 | Jn2Kv2,y2,d2,d3 | Jd1K | Jd2K | Jd3K)
)

where ω = 2, µ = 2, δ = 2 and η = 2. By expanding the definitions of Ju,SKc̃,y, JnKv,y,d̃ , and Jd1K,
the above process can be equivalently stated as follows:

Grid
ω,µ
δ ,η = (ν y1,y2)

(
(ν t1,e1) User〈c̃1,JS1Kt1,e1 ,y1〉 | (ν t2,e2) User〈c̃2,JS2Kt2,e2 ,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | APv2〈y2,d2,d3〉 | AD〈d1〉 | AD〈d2〉 | AD〈d3〉)

)
To illustrate process evolution, we now illustrate a particular reduction sequences that originates

from Grid
ω,µ
δ ,η . Precisely, we show the interactions that occur when the user u1 accesses the grid for

executing its task S1. For this reason, we restrict to discuss the reductions for the interaction among
process representation of u1.

First, we have a reduction Grid
ω,µ
δ ,η −→

∗ GRID1, where we abstract reductions in which process
User〈c̃1,JS1Kt1,e1 ,y1〉 interacts with process APv1〈y1,d1,d2〉 to realize steps of user authentication, proxy
creation, and submission of task S1, as stipulated in the protocol. Process GRID1 is as follows:

GRID1 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gr1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2Kt2,e2 ,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | AP1(S1) | APv2〈y2,d2,d3〉 | (1)

AD〈d1〉 | AD〈d2〉 | AD〈d3〉)
)

This way, after the above mentioned steps are executed, we obtain residual processes for the user
UsrMonitor〈c̃1,gw1,a1,y1,P〉 and the access point AP1(S1). In particular, we write AP1(S1) to de-
note the composition of process JS1Kt1,e1 , the log process for this task, user proxy, as well as process

66 Towards Formal Interaction-based Models of Grid Computing Infrastructures

AP-ProxyHandler〈ce1,d1,d2〉, which interacts with user proxy process. More in detail, the structure of
AP1(S1) is as follows:

AP1(S1) ≡ JS1Kt1,e1 | (ν gw1,ce1)(AP-Log〈gw1,gr1,submitted,null〉 |
e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy〈ce1,a1, t1,gw1〉 |
AP-ProxyHandler〈ce1,d1,d2〉)

Private name gw1 is used by processes (AP-UserProxy〈ce1,a1, t1,gw1〉) and AP-ProxyHandler〈ce1,d1,d2〉
to register the changes in the state of task S1. Private name ce1 stands for the channel on which processes
AP-UserProxy〈ce1,a1, t1,gw1〉 and AP-ProxyHandler〈ce1,d1,d2〉 may interact. At this point, we have
the reduction sequence: GRID1 −→∗ GRID2, which represents some reductions corresponding to the AD
selection in the VO and the task submission to such AD. In this case, we assume the AD d1 is selected
for the execution of the task. Process GRID2 is as follows:

GRID2 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gr1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2Kt2,e2 ,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | AP2(S1) | APv2〈y2,d2,d3〉 | (2)

AD1〈d1〉 | AD〈d2〉 | AD〈d3〉)
)

Above, process AP2(S1) is the residual process for the access point, and process AD1〈d1〉 is the residual
process for the representation of AD d1. In this process, the interaction between the task process and the
user proxy process has evolved to JS11K and AP-UserProxy1, respectively. Process AP2(S1) is as follows:

AP2(S1) ≡ JS11K | (ν gw1,ce1)(AP-Log〈gw1,gr1,queued,null〉 |
e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy1 | (3)

AP-ProxyHandler〈ce1,d1,d2〉)

Then, we have the reduction sequence GRID2 −→∗ GRID3,representing some reductions correspond-
ing to resource selection and task execution. Process GRID3 is as follows:

GRID3 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gw1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2Kt2,e2 ,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | AP3(S1) | APv2〈y2,d2,d3〉 | (4)

AD2(S1) | AD〈d2〉 | AD〈d3〉)
)

In GRID3, process AP3(S1) corresponds to residual process for the access point; process AD2(S1) is
its analogous for the representation of AD d1. Process AP3(S1) and JS21K are as follows:

AP3(S1) ≡ JS21K | (ν gw1,ce1)(AP-Log〈gw1,gr1,running,null〉 |
e1(r̃).gw1〈state,finished〉.gw1〈result, r̃〉 | AP-UserProxy〈ce1,a1, t1,gw1〉〉 |
AP-ProxyHandler〈ce1,d1,d2〉)

JS21K ≡ e1〈r̃es1〉

Process JS21K stands for the residual process for the task process of user u1; it notifies its comple-
tion through channel e1. We obtain the reduction sequence GRID3 −→∗ GRID4 after some reductions
corresponding to task finalization and log registering. Process GRID4 is as follows:

GRID4 ≡ (ν y1,y2)
(
UsrMonitor〈c̃1,gw1,a1,y1,P〉 | (ν t2,e2)User〈c̃2,JS2Kt2,e2 ,y2〉 |

(ν d1,d2,d3)(AP
v1〈y1,d1,d2〉 | AP4(S1) | APv2〈y2,d2,d3〉 | (5)

AD3(S1) | AD〈d2〉 | AD〈d3〉)
)

C. Ramı́rez & J. A. Pérez & J. Aranda & J. Dı́az 67

where AP4(S1) is as follows:

AP4(S1) ≡ (ν gw1,ce1)(AP-Log〈gw1,gr1,finished, r̃es1〉 |
AP-UserProxy〈ce1,a1, t1,gw1〉〉 | AP-ProxyHandler〈ce1,d1,d2〉)

At last, we infer the reduction sequence GRID4 −→∗ GRID5,with process GRID5 defined as follows:

GRID5 ≡ (ν y1,y2)
(
P〈r̃es1〉 | (ν t2,e2)User〈c̃2,JS2Kt2,e2 ,y2〉 | (6)

(ν d1,d2,d3)(AP
4(S1) | APv2〈y2,d2,d3〉 | AD3(S1) | AD〈d2〉 | AD〈d3〉)

)
where process P〈r̃es1〉 denotes an unspecified, parameterized process that is to be executed by the user
monitor with the task result r̃es1. Such a process may correspond to, for instance, a query that stores r̃es1
in some remote database.

6 Future Work

The process model of GC systems presented here describes basic interactions among grid main com-
ponents, abstracting essential static and dynamic properties of such systems. There are some aspects,
such as time, which are typical of GC infrastructures and that our process models does not yet take into
account. Still, we think our current model is already a good basis for extensions: the inherent composi-
tionality of process specifications should ease incremental extensions. In this sense, as future work, we
will refine the model to represent locations (i.e., distinguished computation sites) and process failures.
To this end, an initial approach would be using a calculus of adaptable processes [2], which enables to
incorporate forms of runtime process adaptation over located, interacting processes.

A strong motivation for pursuing a process calculi model of GC systems is that of exploiting the proof
techniques over processes (behavioral equivalences, type systems) so as to reason about grid systems.
That is, we would like to explore how our process model allows us to reason about correctness properties
of GC systems. This involves, for instance, exploiting our model’s compositionality and well-established
theories of behavioral equivalence to reason about arbitrary behaviors in the grid setting. Also, we would
like to reason about task termination and resource delivery in the grid setting. These properties are
intrinsically related to reachability problems, and deadlock- and cycle-detection problems. We believe
that a process calculi model offers a suitable basis also for investigating such problems.

References

[1] Carmen Bratosin, Wil Aalst, Natalia Sidorova & Nikola Trčka (2008): A Reference Model for Grid Ar-
chitectures and Its Analysis. In: Proceedings of the OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I on On the Move to Meaningful Internet Systems:,
OTM ’08, Springer-Verlag, Berlin, Heidelberg, pp. 898–913, doi:10.1007/978-3-540-88871-0 63. Available
at http://dx.doi.org/10.1007/978-3-540-88871-0_63.

[2] Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez & Gianluigi Zavattaro (2012): Adaptable processes. Logical
Methods in Computer Science 8(4). Available at http://dx.doi.org/10.2168/LMCS-8(4:13)2012.

[3] Nadia Busi, Maurizio Gabbrielli & Gianluigi Zavattaro (2009): On the expressive power of recursion, repli-
cation and iteration in process calculi. Mathematical Structures in Computer Science 19(6), pp. 1191–1222.
Available at http://dx.doi.org/10.1017/S096012950999017X.

http://dx.doi.org/10.1007/978-3-540-88871-0_63
http://dx.doi.org/10.1007/978-3-540-88871-0_63
http://dx.doi.org/10.2168/LMCS-8(4:13)2012
http://dx.doi.org/10.1017/S096012950999017X

68 Towards Formal Interaction-based Models of Grid Computing Infrastructures

[4] Y. Du, C. Jiang & Y. Guo (2006): Towards a formal model for grid architecture via Petri Nets. Information
Technology Journal 5(5), pp. 833–841. Available at http://www.scopus.com/inward/record.url?
eid=2-s2.0-33750162414&partnerID=40&md5=c85e98c9215a1644490b3e690a929941.

[5] Ian Foster, Carl Kesselman, Gene Tsudik & Steven Tuecke (1998): A security architecture for computational
grids. In: Proce. of CCS’98, CCS ’98, ACM, New York, NY, USA, pp. 83–92, doi:10.1145/288090.288111.
Available at http://doi.acm.org/10.1145/288090.288111.

[6] Ian Foster, Carl Kesselman & Steven Tuecke (2001): The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. High Perform. Comput. Appl. 15(3), pp. 200–222. Available at http://dx.doi.org/
10.1177/109434200101500302.

[7] Cinzia Di Giusto, Jorge A. Pérez & Gianluigi Zavattaro (2009): On the Expressiveness of Forward-
ing in Higher-Order Communication. In Martin Leucker & Carroll Morgan, editors: ICTAC, Lecture
Notes in Computer Science 5684, Springer, pp. 155–169. Available at http://dx.doi.org/10.1007/
978-3-642-03466-4_10.

[8] Seyyed Mohsen Hashemi & Amid Khatibi Bardsiri (2012): Cloud Computing Vs. Grid Computing. ARPN
Journal of Systems and Software 2(5). Available at http://dx.doi.org/10.2168/LMCS-8(4:13)2012.

[9] Vasileios Koutavas & Matthew Hennessy (2011): A Testing Theory for a Higher-Order Cryptographic Lan-
guage - (Extended Abstract). In Gilles Barthe, editor: ESOP, Lecture Notes in Computer Science 6602,
Springer, pp. 358–377. Available at http://dx.doi.org/10.1007/978-3-642-19718-5_19.

[10] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi & Alan Schmitt (2011): On the expressiveness and decidabil-
ity of higher-order process calculi. Inf. Comput. 209(2), pp. 198–226. Available at http://dx.doi.org/
10.1016/j.ic.2010.10.001.

[11] Robin Milner (1989): Comunication and Concurrency. Prentice Hall.
[12] Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, I. Inf. Com-

put. 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4. Available at http://dx.doi.org/10.1016/
0890-5401(92)90008-4.

[13] Zsolt Németh & Vaidy S. Sunderam (2003): Characterizing Grids: Attributes, Definitions, and Formalisms.
J. Grid Comput. 1(1), pp. 9–23. Available at http://dx.doi.org/10.1023/A:1024011025052.

[14] Carlos A. Ramı́rez, Jorge A. Pérez, Jesús Aranda & Juan Francisco Dı́az Frias (2013): Towards Formal
Interaction-based Models of Grid Computing Infrastructures (Extended Version). Available at http://
tinyurl.com/kkcadba.

[15] Davide Sangiorgi (1992): Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci.

[16] Davide Sangiorgi (1996): Bisimulation for Higher-Order Process Calculi. Inf. Comput. 131(2), pp. 141–178.
Available at http://dx.doi.org/10.1006/inco.1996.0096.

[17] K. Stanoevska-Slabeva, T. Wozniak & S. Ristol (2009): Grid and Cloud Computing: A Business Perspec-
tive on Technology and Applications. Springer. Available at http://books.google.com/books?id=
TxOJI24idPYC.

[18] Chuliang Weng, Xinda Lu & Qianni Deng (2003): Formalizing Service Publication and Discovery in Grid
Computing Systems. In Minglu Li, Xian-He Sun, Qianni Deng & Jun Ni, editors: GCC (1), Lecture
Notes in Computer Science 3032, Springer, pp. 669–676. Available at http://dx.doi.org/10.1007/
978-3-540-24679-4_118.

[19] Li Zhan-jun, Huang Yong-zhong & Guo Shao-zhong (2009): Using Pi-Calculus to Formalize Grid Workflow
Parallel Computing Patterns. In: Proceedings of the 2009 Sixth International Conference on Information
Technology: New Generations, ITNG ’09, IEEE Computer Society, Washington, DC, USA, pp. 1568–1571,
doi:10.1109/ITNG.2009.63. Available at http://dx.doi.org/10.1109/ITNG.2009.63.

[20] Jing Zhou & Guosun Zeng (2009): A mechanism for grid service composition behavior specification and
verification. Future Generation Comp. Syst. 25(3), pp. 378–383. Available at http://dx.doi.org/10.
1016/j.future.2008.02.013.

http://www.scopus.com/inward/record.url?eid=2-s2.0-33750162414&partnerID=40&md5=c85e98c9215a1644490b3e690a929941
http://www.scopus.com/inward/record.url?eid=2-s2.0-33750162414&partnerID=40&md5=c85e98c9215a1644490b3e690a929941
http://dx.doi.org/10.1145/288090.288111
http://doi.acm.org/10.1145/288090.288111
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1007/978-3-642-03466-4_10
http://dx.doi.org/10.1007/978-3-642-03466-4_10
http://dx.doi.org/10.2168/LMCS-8(4:13)2012
http://dx.doi.org/10.1007/978-3-642-19718-5_19
http://dx.doi.org/10.1016/j.ic.2010.10.001
http://dx.doi.org/10.1016/j.ic.2010.10.001
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1023/A:1024011025052
http://tinyurl.com/kkcadba
http://tinyurl.com/kkcadba
http://dx.doi.org/10.1006/inco.1996.0096
http://books.google.com/books?id=TxOJI24idPYC
http://books.google.com/books?id=TxOJI24idPYC
http://dx.doi.org/10.1007/978-3-540-24679-4_118
http://dx.doi.org/10.1007/978-3-540-24679-4_118
http://dx.doi.org/10.1109/ITNG.2009.63
http://dx.doi.org/10.1109/ITNG.2009.63
http://dx.doi.org/10.1016/j.future.2008.02.013
http://dx.doi.org/10.1016/j.future.2008.02.013

Submitted to:

DCM 2013

c© M. Benevides, I. Lima, R. Nader & P. Rougemont

This work is licensed under the

Creative Commons Attribution License.

Using HMM in Strategic Games

Mario Benevides Isaque Lima Rafael Nader Pedro Rougemont

Systems and Computer Engineering Program and Computer Science Department

Federal University of Rio de Janeiro, Brazil

In this paper we describe an approach to resolve strategic games in which players can assume differ-

ent types along the game. Our goal is to infer which type the opponent is adopting at each moment so

that we can increase the players odds. To achieve that we use Markov games combined with hidden

Markov model. We discuss a hypothetical example of a tennis game whose solution can be applied

to any game with similar characteristics.

1 Introduction

Game theory is broadly used in several real world applications to solve situations involving conflicting

interests, such as sports competitions, economics, social studies, etc.

In this paper we propose a model which maps opponent players behavior as a set of states (types),

each state having a pre-defined payoff table, in order to infer opponents next move. We address the

problem in which the states cannot be directly observed, but instead, they can be estimated from the

observations of the players actions.

The rest of this paper is organized as follows. In section 3, we present the necessary background in

Hidden Markov Model. In section 4 we introduce our model and in section 5 we illustrate it using a tennis

game example, whose solution can be applied to any game with similar characteristics. In appendix A,

we provide a Game Theory tool kit for the reader not familiar with this subject.

2 Related Work

In this paper we try to solve a particular case of a problem known as Repeated Game with Incomplete

Information, first introduced by Aumann and Maschler in 1960 [1], described below:

The game G is a Repeated Game where in the first round the state of Nature is chosen by a probability

p and only player 1 knows this state. Player 2 knows the possible states, but doesnt know the actual state.

After each round, both players know the action of each one, and play again.

In [4] it is studied Markov Chain Games with Lack of Information. In this game, instead of a proba-

bility associated to an initial state of Nature, we have a Markov Chain Transition Probability Distribution

that changes the state through time. Both players know the action of each other at each round, but only

one player knows the actual and past states and the payoff associated with those actions. The other

player knows the Transition Probability Distribution. This game is a particular case of Markov Chain

Game or Stochastic Game [6], where both players know the actual state (or the last state and the transition

probability distribution).

In [4] it is presented some properties and solutions for this class of games, using the recurrence

property of a Markov Chain and the Belief Matrix B.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

70 Using HMM in Strategic Games

Our problem is a particular case of Renaults game, where the lack of information is worse and the

unaware player doesnt know the Transition Probability Distribution of the Markov Chain Game. With

that, we can describe formally our problem as below:

The game G is a Repeated Game between two players where the Player 1 has a type that changes

through the time. Each type has a probability distribution to other types that is independent of past states

and actions. Each type introduces a different game with different payoffs. Player 1 knows his actual

type, player 2 knows the types that player 1 can be, but doesnt know the actual type neither the transition

between types. Both players know the action of each round.

As said before, our game is a particular case of a Markov Chain Game, so the transition between

types of player 1 follows the Markov Property. But as the player 2 doesnt know the state of player 1

we cant solve this as a Markov Chain Game (or Stochastic Game), and as the player 2 doesnt know the

transition between the types we cant use the Markov Chain Game with Lack of Information.

To solve this problem we propose a model to this game and a solution that involves Hidden Markov

Model. We compare our results with other ways to solve a problem like that.

3 Hidden Markov Model (HMM)

A Hidden Markov Model [10, 9] is composed by hidden states, associated to random variables that

describe the transitions between states. It has the Markov Property, i.e., the transitions are memoryless,

independent of the past states.

The hidden chain is associated with observations. Each hidden state is described by a random variable

whose possible values are the observations.

Definition 1 A Hidden Markov Model Λ = 〈A,B,Π〉 consists of

• a finite set of states Q = {q1, ...,qn};

• a transition array A, storing the probability of the current state be qi given that the previous state

was q j;

• a finite set of observation states O = {o1, ...,ok};

• a transition array B, storing the probability of the observation state oi be produced from state q j;

• a 1×n initial array Π, storing the initial probability of the model be in state qi.

Based on a given set of observations yi, and a predefined set of transitions bi j, the Hidden Markov

Models framework allows us to estimate the hidden transitions, labeled ai j in the figure above.

4 Hidden Markov Game (HMG)

In this section, we describe the Hidden Markov Game (HMG), which is inspired by the works discussed

in section 2. We first define it for many player and then restrict it to two players.

Definition 2 A Hidden Markov Game G consists of

• A finite set of players P = {1, ..., I};

• Strategy sets S1,S2, ...SI , one for each player;

• Type sets T1,T2, ...TI , one for each player;

M. Benevides, I. Lima, R. Nader & P. Rougemont 71

Figure 1: HMM Example

• A transition functions Ti : Ti ×S1 × ...×SI 7→ PD(Ti), one for each player;

• A finite set of observation state variables O = {O1, ...,Ok};

• Payoff functions ui : S1 ×S2 × ...×SI ×Ti 7→ ℜ, one for each player;

• Probability Distribution πi, j, representing the player i prior belief about the type of his opponent

j, for each player j.

Where PD(Ti) is a probability distribution over Ti.

We are interested in a particular case of the HMG where we have two players and players 1 does not

know his transitions function Ti. And the set of observation state variables O = S2

Problem: Given a sequence of observations on time of the observation state variables Ot0 ,,Otm ,

we want to know the probability, for player i, that Otm+1 = O j, for 1 ≤ j ≤ k.

In fact, a Hidden Markov Game can be seem as a Markov Game where a player does not know the

probability distributions of the transitions between types. Instead, he knows a sequence of observation

on time of the observable behavior of each opponent.

Due to this particularity, we cannot use the standard Markov Game tools to solve the game. The

aim of our model is to provide a solution for the game partitioning the problem. In order to achieve that

we infer the Markov chain at each turn of the game and then play in accordance to this Markov Game.

In fact, if we had a one turn game, then we would have a Bayesian Game and we could calculate the

Bayesian Nash Equilibrium and play according to it. This is what has been done in [11].

The inference of the transitions of the Markov chain is accomplished using a Hidden Markov Model

HMM. The probability distribution associating each state of the Markov chain to the observable states

are given by the Mixed Equilibrium of each matrix in each type. A Baum Welch Algorithm is used to

infer the HMM.

Our Solution: Given a Hidden Markov Game G and a sequence of observations on time of the obser-

vation state variables Ot0 ,,Otm , we want to calculate the probability, for player i, that Otm+1 = O j, for

1 ≤ j ≤ k. This is accomplished following the steps below:

1. Represent the Hidden Markov Game G as a Hidden Markov Model each for player i as follows:

(a) the finite set of states Q = {q1, ...,qn} is the set the set Ti ×S1 × ...×SI;

72 Using HMM in Strategic Games

(b) the transition array A, storing the probability of the current state be q j given that the previous

state was ql is what we want to infer;

(c) the finite set of observation states O = {o1, ...,ok} is the set of observation state variables

O = {O1, ...,Ok};

(d) the transition array B, storing the probability of the observation state Oh be produced from

state q j =< Tj,s1, ...,sI > is obtained calculating the probability of player i using strategy

< s1, ...,sI > in the Mixed Nash Equilibrium of game Tj and adding the probabilities, for

each profile~s−i ∈ fi(Oh);

(e) the 1×n initial array Π, storing the initial probability of the model be in state q j is the πi, j.

2. Use the Baum Welsh algorithm to infer the matrix A;

3. Solve the underline Markov Game and find the must probable type each opponent is playing;

4. If it is one move game then choose the observable state with the greatest probability. Else, play

according to the Mixed Nash Equilibrium.

5 Application and Test

In order to illustrate our frame work we present an example of a tennis game. In this example, there are

three hidden states, i.e., players types (aggressive, moderate and defensive) and two possible observations

(open and center).

We assume that the transitions between the hidden states and the observations are fixed, i.e., they are

previously computed using the payoff matrix of each profile. We do that to reduce the number of loose

variables. We compare ours results with the ones obtained by Bayesian game using the same trained

HMM to compute the Bayesian output. We also compare our results with some more naive approachs

like Tit-for-Tat (that always repeat the last action made by the opponent), Random Choice and More

Frequently (choose the action that is more frequently used by the opponent).

We used the following payoff matrixes, with two players: player 1 (column) and player 2 (row).

Open Center

Open 0.65,0.35 0.89,0.11

Center 0.98,0.02 0.15,0.85

Table 1: Payoff Matrix (Aggressive Profile)

Open Center

Open 0.15,0.85 0.80,0.20

Center 0.90,0.10 0.15,0.85

Table 2: Payoff Matrix (Moderate Profile)

Open Center

Open 0.10,0.90 0.55,0.45

Center 0.85,0.15 0.05,0.95

Table 3: Payoff Matrix (Defensive Profile)

We compute the mixed strategy to each profile, and consequentially compute the values of B.

Next we present some scenarios that we use.

M. Benevides, I. Lima, R. Nader & P. Rougemont 73

5.1 Scenarios

In this section we present some of the scenarios that we use.

The original HMM is only used to generate the observations of the game. We generate 10.000

observations, for each scenario, and after every 200 observations we compute the result of the game.

We used the metric proposed in [9] to compare the similarity of two Markov models.

5.1.1 Scenario 1 Aggressive Player

In order to illustrate the behavior of an aggressive player we model a HMM that has more probability to

stay in the aggressive state.

Figure 2: Original HMM (Aggressive Player)

74 Using HMM in Strategic Games

Figure 3: Trained HMM (Aggressive Player)

The difference between the original HMM and de trained HMM was 0,0033, i.e, the two HMM are

very close, as we can empiric see in the picture below. As we can see on the table below, the proposed

algorithm increase the player odds.

Proposed Model Bayesian Game Random More Frequently Tit-for-Tat

hit rate 0,78 0,58 0,496 0,582 0,532

Table 4: Agressive Scenario Hit Rate

Figure 4: Agressive Scenario Graphic

M. Benevides, I. Lima, R. Nader & P. Rougemont 75

5.1.2 Scenario 2 Defensive Player

In order to illustrate the behavior of a defensive player we model a HMM that has more probability to

stay in the defensive state.

Figure 5: Original HMM (Defensive Player)

Figure 6: Trained HMM (Defensive Player)

Once again the proposed algorithm increase the player odds and the trained HMM is very close to

the original HMM.

76 Using HMM in Strategic Games

Proposed Model Bayesian Game Random More Frequently Tit-for-Tat

hit rate 0,71 0,50 0,492 0,53 0,498

Table 5: Defensive Scenario Hit Rate

Figure 7: Defensive Player Graphic

The gain in these two scenarios are due to the fact that the proposed algorithm take into account the

transitions between hidden states, so we have more information that help us to choose a better strategy.

6 Conclusions

In this work we have introduced a novel class of games called Hidden Markov Games, which can be

thought as Markov Game where a player does not know the probability distributions of the transitions

between types. Instead, he knows a sequence of observation on time of the observable behavior of each

opponent. We propose a solution to our game representing it as a Hidden Markov Model, We use Baum

Welsh algorithm to infer the probability distributions of the transitions between types. Finally, we solve

the underline Markov Game.

In order to illustrate our approach, we present a tennis game example and solve it using our method.

The experimental results indicates that our solution is quite good.

References

[1] R. J. Aumann and M. Maschler, Repeated games with incomplete information, with the collaboration of R.

Stearns, Cambridge, MA: MIT Press, 1995 .

[2] M. J. Osborne and A. Rubinstein A Couser in Game Theory. The MIT Press, 1994.

[3] R. Gibbons. A Prime in Game Theory. Prentice Hall, 1992.

[4] J. Renault. The value of Markov chain games with lack of information on one side Mathematics of Operations

Research,. vol. 31 pp. 490-512, 2006.

M. Benevides, I. Lima, R. Nader & P. Rougemont 77

[5] W. He and J. Gao. A Finitely Repeated Bayesian Game with Hidden Markovian States Third International

Joint Conference on Computational Science and Optimization. IEEE, 2010.

[6] J. Van Der Wal. Stochastic dynamic programming In Mathematical Centre Tracts, 139. M. Kaufmann, 1981.

[7] M. Owen. Game Theory. Academic Press, Orlando, Florida, Second Edition, 1982.

[8] M. L. Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learning Proceedings of the

Eleventh International Conference on Machine Learning. Morgan Kaufmann, 1994.

[9] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applic. Speech Recognition. IEEE, 1989.

[10] L. R. Rabiner. A Probabilistic Distance Measure for Hidden Markov Models. AT&T Tech. J.. vol. 64, no 2,

p. 391-408, 1985.

[11] E. Waghabi. Applying HMM in Mixed Strategy Game. MSC. Th., PESC. Federal Univ. Rio de Janeiro, 2009.

A Game Theory Tool Kit

In this section, we present the necessary background on Game theory. First we introduce the concepts

of Normal Form Strategic Game and Pure and Mixed Nash Equilibrium. Finally, we define Bayesian

Games and Markov Games.

Definition 3 A Normal (Strategic) Form game G consists of

• A finite set of players P = {1, ..., I};

• Strategy sets S1,S2, ...SI , one for each player;

• Payoff functions ui : S1 ×S2 × ...×SI 7→ ℜ, one for each player.

A strategy profile is a tuple s = s1,s2, ...,sI such that s ∈ S , where S = S1 ×S2 × ...×SI . We denote

s−i as the profile obtained from s removing si, i.e., s−i = s1,s2, ...,si−1,si+1, ...,sI

The following game is an example of normal (strategic) form game with two players Rose (Row) and

Collin (Column) and both have two strategies s1 and s2.

s1 s2

s1 3,3 2,5

s2 5,2 1,1

Table 6: Normal Form Strategic Game

Definition 4 A strategy profile s∗ is a pure strategy Nash equilibrium of G if and only if

ui(s
∗)≥ ui(si,s−i)

for all players i and all strategy si ∈ Si, where u is the payoff function.

Intuitively, a strategy profile is a Nash Equilibrium if for each player, he cannot improve his payoff

changing his strategy alone.

The game presented in table 6 has two Nash Equilibrium (s1,s2) and (s2,s1). Which one they should

play? A possible answer could be to assign probabilities to the strategies, i.e., Rose could play s1 with

probability p and s2 with 1− p, and Collin could play s1 with probability q and s2 with 1−q. This game

has a mixed Nash equilibrium that is p = 1/3 and q = 1/3. We can calculate the expected payoff for both

78 Using HMM in Strategic Games

player and check that they cannot improve their payoff changing their strategy alone, i.e., this a Nash

Equilibrium.

Other class of static games are strategic games of incomplete information also called Bayesian Games

[2, 3]. The intuition behind this kind of game is that in some situations the player knows his payoff

function but is not sure about his opponents function. He knows that his opponent is playing according

to one type in a finite set of types with some probability.

Definition 5 A Static Bayesian game G consists of

• A finite set of players P = {1, ..., I};

• Strategy sets S1,S2, ...SI , one for each player;

• Type sets T1,T2, ...TI , one for each player;

• Payoff functions ui : S1 ×S2 × ...×SI ×Ti 7→ ℜ, one for each player.

• Probability Distribution P(t−i | ti) , denoting the player i belief about his opponents types t−i, given

that his type is ti.

• Probability Distribution πi, representing the player i prior belief about the types of his opponents.

Markov Games [6, 7, 8] can be though as a natural extension of Bayesian games, where we have

transitions between types and a probability distributions over these transitions.

A Markov game can be defined as follows

Definition 6 A Markov game G consists of

• A finite set of players P = {1, ..., I};

• Strategy sets S1,S2, ...SI , one for each player;

• Type sets T1,T2, ...TI , one for each player;

• A transition functions Ti : Ti ×S1 × ...×SI 7→ PD(Ti), one for each player;

• Payoff functions ui : S1 ×S2 × ...×SI ×Ti 7→ ℜ, one for each player;

• Probability Distribution πi, representing the player i prior belief about the types of his opponents.

Where PD(Ti) is a probability distribution over Ti.

